# User:Pfafrich/Blahtex ^\sqrt bugs

Jump to: navigation, search

User:Pfafrich/Blahtex en.wikipedia fixup

This page is part a set of pages devoted to fixing latex bugs in the english wikipedia so that they will be compatable with the meta:Blahtex MathML project.

Below are pages which contain x^\sqrt',x^\acute etc. Each occurence x^\sqrt{a} should be replaced by x^{\sqrt{a}} and when fixed the pages should be moved to the done section. Feel free to fix as necessary.

The combinations affected are

• x^\overline{y}
• x^\left(y\right)
• x^\acute{n}
• x^\hat{n}
• x^\mbox{n}
• x^\sqrt{n}
• x^\ldots
• x^\overline{y}
for i in acute hat ldots left mbox overline sqrt underline ; do
grep "\\^\\\\\$i" eqnsJan06.txt >> raise.txt
done


## Undone

• Asymptotic expansion ${\displaystyle \zeta (s)\sim \sum _{n=1}^{N-1}n^{-s}+{\frac {N^{1-s}}{s-1}}+N^{-s}\sum _{m=1}^{\infty }{\frac {B_{2m}s^{\overline {2m-1}}}{(2m)!N^{2m-1}}}}$
• Asymptotic expansion ${\displaystyle s^{\overline {2m-1}}}$
• Band gap ${\displaystyle e^{\left({\frac {-E_{g}}{kT}}\right)}}$
• Coupled cluster ${\displaystyle \vert {\Psi }\rangle =e^{\hat {T}}\vert {\Phi _{0}}\rangle }$
• Difference quotient ${\displaystyle ={\frac {\sum _{I=0}^{\acute {N}}{-1 \choose I}{{\acute {N}} \choose I}F(P_{\acute {n}}-I\Delta _{1}P)}{\Delta _{1}P^{\acute {n}}}};\,\!}$
• Difference quotient ${\displaystyle ={\frac {\sum _{I=0}^{\acute {N}}{-1 \choose {\acute {N}}-I}{{\acute {N}} \choose I}F(P_{0}+I\Delta _{1}P)}{\Delta _{1}P^{\acute {n}}}};\,\!}$
• Difference quotient ${\displaystyle \Delta ^{\acute {n}}F(P_{0})\,\!}$
• Difference quotient ${\displaystyle {\frac {D^{\acute {n}}F(P_{0})}{DP^{\acute {n}}}}\,\!}$
• Difference quotient ${\displaystyle {\frac {\Delta ^{\acute {n}}F(P_{0})}{\Delta _{1}P^{\acute {n}}}}\,\!}$
• Difference quotient ${\displaystyle {\frac {\nabla ^{\acute {n}}F(P_{\acute {n}})}{\Delta _{1}P^{\acute {n}}}}\,\!}$
• Difference quotient ${\displaystyle {\frac {d^{\acute {n}}F(P_{0})}{dP^{\acute {n}}}}\,\!}$
• [[Gelfond<E2><80><93>Schneider constant]] ${\displaystyle 2^{\sqrt {2}}=2.6651441...}$
• [[Gelfond<E2><80><93>Schneider constant]] ${\displaystyle {\sqrt {2}}^{\sqrt {2}}=1.6325269...}$
• Googol ${\displaystyle {10}^{\mbox{googol}}}$
• Googolplex ${\displaystyle {10}^{\mbox{10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000}}}$
• Googolplex ${\displaystyle {10}^{\mbox{googol}}}$
• Irrational number ${\displaystyle \pi ^{\sqrt {2}}}$
• Limit ordinal ${\displaystyle \omega ^{3},\omega ^{4},\ldots ,\omega ^{\omega },\omega ^{\omega ^{\omega }},\ldots ,\epsilon _{0}=\omega ^{\omega ^{\omega ^{\ldots }}},\ldots }$
• Nonconstructive proof ${\displaystyle \left({\sqrt {2}}^{\sqrt {2}}\right)^{\sqrt {2}}={\sqrt {2}}^{({\sqrt {2}}\cdot {\sqrt {2}})}={\sqrt {2}}^{2}=2}$
• Nonconstructive proof ${\displaystyle {\sqrt {2}}^{\sqrt {2}}}$
• Nonconstructive proof ${\displaystyle q={\sqrt {2}}^{\sqrt {2}}}$
• Proof of Bertrand's postulate ${\displaystyle (2n)^{\sqrt {2n}}}$
• Proof of Bertrand's postulate ${\displaystyle {\frac {4^{n}}{2n+1}}\leq (2n)^{\sqrt {2n}}4^{\frac {2n}{3}}}$
• Proof of Bertrand's postulate ${\displaystyle {\frac {4^{n}}{2n+1}}\leq {2n \choose n}\leq (2n)^{\sqrt {2n}}\prod _{p\in \mathbb {P} }^{\frac {2n}{3}}p=(2n)^{\sqrt {2n}}e^{\theta ({\frac {2n}{3}})}}$
• Rigid rotor ${\displaystyle P_{l}^{\left|m\right|}(\cos \theta )}$
• Rigid rotor ${\displaystyle Y_{l,m}(\theta ,\phi )=\left[{\sqrt {{(2l+1) \over 2}{(l-\left|m\right|)! \over (l+\left|m\right|)!}}}P_{l}^{\left|m\right|}(\cos \theta )\right]\left[{\sqrt {1 \over 2\pi }}\exp(im\phi )\right]}$
• Schwarzschild coordinates ${\displaystyle d\sigma ^{\hat {m}}=-{\omega ^{\hat {m}}}_{\hat {n}}\,\wedge \sigma ^{\hat {n}}}$
• Schwarzschild coordinates ${\displaystyle {\Omega ^{\hat {m}}}_{\hat {n}}=d{\omega ^{\hat {m}}}_{\hat {n}}\wedge \sigma ^{\hat {n}}-{\omega ^{\hat {m}}}_{\hat {\ell }}\wedge {\omega ^{\hat {\ell }}}_{\hat {n}}}$
• Schwarzschild coordinates ${\displaystyle {\Omega ^{\hat {m}}}_{\hat {n}}={R^{\hat {m}}}_{{\hat {n}}|{\hat {i}}{\hat {j}}|}\,\sigma ^{\hat {i}}\wedge \sigma ^{\hat {j}}}$
• Schwarzschild coordinates ${\displaystyle {\omega ^{\hat {m}}}_{\hat {n}}}$
• Space charge ${\displaystyle i=(1-{\tilde {r}})A_{0}T^{2}e^{\left({\frac {-e\phi }{kT}}\right)}}$
• User:Bkell/Sandbox ${\displaystyle {}_{113}^{\underline {355}}}$
• User:Neocapitalist ${\displaystyle ({\sqrt {2}}^{\sqrt {2}})^{\sqrt {2}}={\sqrt {2}}^{2}=2}$
• User:Neocapitalist ${\displaystyle {\sqrt {2}}^{\sqrt {2}}}$
• User:Neocapitalist ${\displaystyle a=({\sqrt {2}}^{\sqrt {2}})}$
• User:Neocapitalist ${\displaystyle k^{n}={\sqrt {2}}^{\sqrt {2}}}$
• User:Pjacobi/Scratchpad
• User:Stendhalconques ${\displaystyle \zeta (s)\sim \sum _{n=1}^{N-1}n^{-s}+{\frac {N^{1-s}}{s-1}}+N^{-s}\sum _{m=1}^{\infty }{\frac {B_{2m}s^{\overline {2m-1}}}{(2m)!N^{2m-1}}}}$
• User:Stendhalconques ${\displaystyle s^{\overline {2m-1}}}$

## Update

STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP

No, "x^\frac{a}{b}" is perfectly okay! On both blahtex and regular LaTeX!

Even "x^\frac a b" is fine.

The reason: "\frac" is a macro in LaTeX, and "x^\frac a b" gets expanded as "x^{a \over b}" (well maybe something more complicated, but you get the idea).

Blahtex knows this about "\frac".

So leave this page alone and go onto the next one!!! Dmharvey 03:55, 11 February 2006 (UTC)

STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP STOP