From Wikipedia, the free encyclopedia
A number of mathematical formulas can be written compactly using determinants. The following list contains some of the more useful or notable such formulas that have been discovered.
Extended quotient rule [ edit ]
From the generalized product rule , if h =fg then
h
′
=
f
g
′
+
f
′
g
{\displaystyle h'=fg'+f'g\,}
h
″
=
f
g
″
+
2
f
′
g
′
+
f
″
g
{\displaystyle h''=fg''+2f'g'+f''g\,}
h
‴
=
f
g
‴
+
3
f
′
g
″
+
3
f
″
g
′
+
f
‴
g
{\displaystyle h'''=fg'''+3f'g''+3f''g'+f'''g\,}
⋮
{\displaystyle \,\,\vdots }
h
(
n
)
=
f
g
(
n
)
+
(
n
1
)
f
′
g
(
n
−
1
)
+
(
n
2
)
f
″
g
(
n
−
2
)
+
⋯
+
f
(
n
)
g
{\displaystyle h^{(n)}=fg^{(n)}+{n \choose 1}f'g^{(n-1)}+{n \choose 2}f''g^{(n-2)}+\dots +f^{(n)}g}
Using Cramer's rule to solve for f (n ) produces the determinant formula
[ 1]
f
(
n
)
=
(
h
g
)
(
n
)
=
{\displaystyle f^{(n)}=\left({\frac {h}{g}}\right)^{(n)}=}
g
−
(
n
+
1
)
|
g
h
g
′
g
h
′
g
″
2
g
′
g
h
″
g
‴
3
g
″
3
g
′
g
h
‴
⋮
⋱
g
(
n
)
(
n
1
)
g
(
n
−
1
)
(
n
2
)
g
(
n
−
2
)
(
n
3
)
g
(
n
−
3
)
⋯
h
(
n
)
|
{\displaystyle g^{-(n+1)}{\begin{vmatrix}g&&&&&h\\g'&g&&&&h'\\g''&2g'&g&&&h''\\g'''&3g''&3g'&g&&h'''\\\vdots &&&&\ddots &\\g^{(n)}&{n \choose 1}g^{(n-1)}&{n \choose 2}g^{(n-2)}&{n \choose 3}g^{(n-3)}&\cdots &h^{(n)}\end{vmatrix}}}
By applying this to find Taylor series coefficients in the cases h =x , g =ex -1; h =ex -1, g =ex +1; h =sin x , g =cos x ; h =x , g =sin x ; and h =1, g =cos x ; four different determinant expressions for the Bernoulli numbers and a determinant expression for the Euler numbers can be obtained.[ 2]
Symmetric polynomials [ edit ]
The Schur polynomial
s
(
d
1
,
d
2
,
…
,
d
n
)
(
x
1
,
x
2
,
…
,
x
n
)
{\displaystyle s_{(d_{1},d_{2},\dots ,d_{n})}(x_{1},x_{2},\dots ,x_{n})}
are defined as the quotients of the alternating polynomial
|
x
1
d
1
+
n
−
1
x
2
d
1
+
n
−
1
⋯
x
n
d
1
+
n
−
1
x
1
d
2
+
n
−
2
x
2
d
2
+
n
−
2
⋯
x
n
d
2
+
n
−
2
⋮
⋮
⋱
⋮
x
1
d
n
x
2
d
n
⋯
x
n
d
n
|
{\displaystyle {\begin{vmatrix}x_{1}^{d_{1}+n-1}&x_{2}^{d_{1}+n-1}&\cdots &x_{n}^{d_{1}+n-1}\\x_{1}^{d_{2}+n-2}&x_{2}^{d_{2}+n-2}&\cdots &x_{n}^{d_{2}+n-2}\\\vdots &\vdots &\ddots &\vdots \\x_{1}^{d_{n}}&x_{2}^{d_{n}}&\cdots &x_{n}^{d_{n}}\end{vmatrix}}}
and the Vandermond determinant
|
x
1
n
−
1
x
2
n
−
1
⋯
x
n
n
−
1
x
1
n
−
2
x
2
n
−
2
⋯
x
n
n
−
2
⋮
⋮
⋱
⋮
1
1
⋯
1
|
{\displaystyle {\begin{vmatrix}x_{1}^{n-1}&x_{2}^{n-1}&\cdots &x_{n}^{n-1}\\x_{1}^{n-2}&x_{2}^{n-2}&\cdots &x_{n}^{n-2}\\\vdots &\vdots &\ddots &\vdots \\1&1&\cdots &1\end{vmatrix}}}
This can, in turn, be expressed as a determinant involving the complete homogeneous symmetric polynomials as[ 3]
|
h
d
1
+
n
−
1
h
d
1
+
n
−
2
⋯
h
d
1
h
d
2
+
n
−
2
h
d
2
+
n
−
3
⋯
h
d
2
−
1
⋮
⋮
⋱
⋮
h
d
n
h
d
n
−
1
⋯
h
d
n
−
n
+
1
|
{\displaystyle {\begin{vmatrix}h_{d_{1}+n-1}&h_{d_{1}+n-2}&\cdots &h_{d_{1}}\\h_{d_{2}+n-2}&h_{d_{2}+n-3}&\cdots &h_{d_{2}-1}\\\vdots &\vdots &\ddots &\vdots \\h_{d_{n}}&h_{d_{n}-1}&\cdots &h_{d_{n}-n+1}\\\end{vmatrix}}}
Newton's identities
A002135 Number of terms in a symmetric determinant (See Muir p. 112)