Jump to content

User:Simone Cimò/sandbox

From Wikipedia, the free encyclopedia

Conductive organic materials[edit]

Organic conductive materials can be devided in p-type and n-type materials. The main difference is the electric charge of their charge carrier: p-type materials are positive charges conductors and n-type materials are negative charges conductors. Furthermore, organic conductive materials can be grouped into two main classes: conductive molecules and conductive polymers.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

p-type materials[edit]

P-type materials have been extensively studied in the past.[9] [10] Among the numerous p-type polymeric materials there are polypirrole, polythiophene, polyaniline and pedot.

n-type materials[edit]

Even if electronic devices requires both p-type and n-type materials, in the past the research has been mainly focussed on the development of p-type materials.[9][10] This disproportion is mainly due to the lack of commercially available n-type materials and their poor stability which greatly affects their processability and their study. The rather poor atmospheric stability of n-type materials is directly linked to their high LUMO level [9]. For this reasons many n-type materials are conjugated systems functionalized with electron-withdrawing functional groups. Among n-type molecular materials there are: perylene and naphtalene based materials and fullerenes. Among n-type polymeric materials there are p-phenylene vinylene derived polymers, organometallic coordination polymers and P(NDI2OD-T2) derived polymers.

Perylene and Naphtalene derived materials[edit]

n-type naphtalene and perylene derived molecules

Naphthalene diimide (NDI) and Perylene bisimide (PDI) derive from naphtalene dianhydride (NDA) perylene dianhydride (PDA), respectively. NDA and PDA can be functionalized with two side groups that provide increased solubility in organic solvents and crystallization tailoring. As reported by Shukla, D. et al. [11], the π molecular orbital has nodes in the position of the two nitrogen atoms and this allows to change side substituents without drastically modifying the electronic structure. This characteristic, combined with their easy single-step synthesis from commercially available NDA and PDA, [12] makes NDI and PDI materials very popular: modifications in side chain lenght, ramifications, polarity and intramolecular binding have been explored. [13] Another class of naphtalene-derived molecules are the naphtodithiophenediimide (NDTI) molecules which are core-extended NDI derivatives characterized buy a reduced steric hinderance and an increased solubility in common organic solvents.[14] Furthermore, NDTI molecules are more customizable since they can be easily functionalized both on the nitrogen imide atoms (where solubilizing alkyl chains are usually inserted) and on the α thiophene positions (where it is possible to add electron-withdrawing groups to further tune their electronic properties).[15]


Reilly T. H. et al. [16] have created a water soluble PDI with a remarkable electrical conductivity of 10-3 S cm-1. Russ B. et al. [17] [18] have functionalized PDI molecules with different lenght alkyl chains tethering an amine group (acting as an intrinsic dopant) to the perylene core and were able to obtain a dramatic increase in electrical conductivity, up to 0.5 S cm-1.

  1. ^ Giussani, Ester; Fazzi, Daniele; Brambilla, Luigi; Caironi, Mario; Castiglioni, Chiara (26 March 2013). "Molecular Level Investigation of the Film Structure of a High Electron Mobility Copolymer via Vibrational Spectroscopy". Macromolecules. 46 (7): 2658–2670. doi:10.1021/ma302664s.
  2. ^ Wang, Suhao; Sun, Hengda; Ail, Ujwala; Vagin, Mikhail; Persson, Per O. Å.; Andreasen, Jens W.; Thiel, Walter; Berggren, Magnus; Crispin, Xavier; Fazzi, Daniele; Fabiano, Simone (December 2016). "Thermoelectric Properties of Solution-Processed n-Doped Ladder-Type Conducting Polymers". Advanced Materials. 28 (48): 10764–10771. doi:10.1002/adma.201603731.
  3. ^ Schlitz, Ruth A.; Brunetti, Fulvio G.; Glaudell, Anne M.; Miller, P. Levi; Brady, Michael A.; Takacs, Christopher J.; Hawker, Craig J.; Chabinyc, Michael L. (May 2014). "Solubility-Limited Extrinsic n-Type Doping of a High Electron Mobility Polymer for Thermoelectric Applications". Advanced Materials. 26 (18): 2825–2830. doi:10.1002/adma.201304866.
  4. ^ Naab, Benjamin D.; Zhang, Siyuan; Vandewal, Koen; Salleo, Alberto; Barlow, Stephen; Marder, Seth R.; Bao, Zhenan (July 2014). "Effective Solution- and Vacuum-Processed n-Doping by Dimers of Benzimidazoline Radicals". Advanced Materials. 26 (25): 4268–4272. doi:10.1002/adma.201400668.
  5. ^ Saglio, B.; Mura, M.; Massetti, M.; Scuratti, F.; Beretta, D.; Jiao, X.; McNeill, C. R.; Sommer, M.; Famulari, A.; Lanzani, G.; Caironi, M.; Bertarelli, C. (2018). "-Alkyl substituted 1 -benzimidazoles as improved n-type dopants for a naphthalene-diimide based copolymer". Journal of Materials Chemistry A. 6 (31): 15294–15302. doi:10.1039/C8TA04901G.
  6. ^ Fabiano, Simone; Braun, Slawomir; Liu, Xianjie; Weverberghs, Eric; Gerbaux, Pascal; Fahlman, Mats; Berggren, Magnus; Crispin, Xavier (September 2014). "Poly(ethylene imine) Impurities Induce n-doping Reaction in Organic (Semi)Conductors". Advanced Materials. 26 (34): 6000–6006. doi:10.1002/adma.201401986.
  7. ^ Qi, Yabing; Mohapatra, Swagat K.; Bok Kim, Sang; Barlow, Stephen; Marder, Seth R.; Kahn, Antoine (20 February 2012). "Solution doping of organic semiconductors using air-stable n-dopants". Applied Physics Letters. 100 (8): 083305. doi:10.1063/1.3689760.
  8. ^ Wang, Suhao; Sun, Hengda; Erdmann, Tim; Wang, Gang; Fazzi, Daniele; Lappan, Uwe; Puttisong, Yuttapoom; Chen, Zhihua; Berggren, Magnus; Crispin, Xavier; Kiriy, Anton; Voit, Brigitte; Marks, Tobin J.; Fabiano, Simone; Facchetti, Antonio (August 2018). "A Chemically Doped Naphthalenediimide-Bithiazole Polymer for n-Type Organic Thermoelectrics". Advanced Materials. 30 (31): 1801898. doi:10.1002/adma.201801898.
  9. ^ a b c Yao, Hongyan; Fan, Zeng; Cheng, Hanlin; Guan, Xin; Wang, Chen; Sun, Kuan; Ouyang, Jianyong (March 2018). "Recent Development of Thermoelectric Polymers and Composites". Macromolecular Rapid Communications. 39 (6): 1700727. doi:10.1002/marc.201700727.
  10. ^ a b Lu, Yang; Wang, Jie-Yu; Pei, Jian (12 June 2019). "Strategies To Enhance the Conductivity of n-Type Polymer Thermoelectric Materials". Chemistry of Materials. 31 (17): 6412–6423. doi:10.1021/acs.chemmater.9b01422.
  11. ^ Shukla, Deepak; Nelson, Shelby F.; Freeman, Diane C.; Rajeswaran, Manju; Ahearn, Wendy G.; Meyer, Dianne M.; Carey, Jeffrey T. (23 December 2008). "Thin-Film Morphology Control in Naphthalene-Diimide-Based Semiconductors: High Mobility n-Type Semiconductor for Organic Thin-Film Transistors". Chemistry of Materials. 20 (24): 7486–7491. doi:10.1021/cm802071w.
  12. ^ Kakinuma, Tomoyuki; Kojima, Hirotaka; Ashizawa, Minoru; Matsumoto, Hidetoshi; Mori, Takehiko (2013). "Correlation of mobility and molecular packing in organic transistors based on cycloalkyl naphthalene diimides". Journal of Materials Chemistry C. 1 (34): 5395. doi:10.1039/C3TC30920G.
  13. ^ Katz, Howard E.; Johnson, Jerainne; Lovinger, Andrew J.; Li, Wenjie (August 2000). "Naphthalenetetracarboxylic Diimide-Based n-Channel Transistor Semiconductors:  Structural Variation and Thiol-Enhanced Gold Contacts". Journal of the American Chemical Society. 122 (32): 7787–7792. doi:10.1021/ja000870g. {{cite journal}}: no-break space character in |title= at position 78 (help)
  14. ^ Nakano, Masahiro; Hashizume, Daisuke; Takimiya, Kazuo (28 July 2016). "N,N′-Bis(2-cyclohexylethyl)naphtho[2,3-b:6,7-b′]dithiophene Diimides: Effects of Substituents". Molecules. 21 (8): 981. doi:10.3390/molecules21080981.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  15. ^ Nakano, Masahiro; Osaka, Itaru; Hashizume, Daisuke; Takimiya, Kazuo (4 September 2015). "α-Modified Naphthodithiophene Diimides—Molecular Design Strategy for Air-Stable n-Channel Organic Semiconductors". Chemistry of Materials. 27 (18): 6418–6425. doi:10.1021/acs.chemmater.5b02601.
  16. ^ Reilly, Thomas H.; Hains, Alexander W.; Chen, Hsiang-Yu; Gregg, Brian A. (April 2012). "A Self-Doping, O2-Stable, n-Type Interfacial Layer for Organic Electronics". Advanced Energy Materials. 2 (4): 455–460. doi:10.1002/aenm.201100446.
  17. ^ Russ, Boris; Robb, Maxwell J.; Popere, Bhooshan C.; Perry, Erin E.; Mai, Cheng-Kang; Fronk, Stephanie L.; Patel, Shrayesh N.; Mates, Thomas E.; Bazan, Guillermo C.; Urban, Jeffrey J.; Chabinyc, Michael L.; Hawker, Craig J.; Segalman, Rachel A. (2016). "Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors". Chemical Science. 7 (3): 1914–1919. doi:10.1039/C5SC04217H.
  18. ^ Russ, Boris; Robb, Maxwell J.; Brunetti, Fulvio G.; Miller, P. Levi; Perry, Erin E.; Patel, Shrayesh N.; Ho, Victor; Chang, William B.; Urban, Jeffrey J.; Chabinyc, Michael L.; Hawker, Craig J.; Segalman, Rachel A. (June 2014). "Power Factor Enhancement in Solution-Processed Organic n-Type Thermoelectrics Through Molecular Design". Advanced Materials. 26 (21): 3473–3477. doi:10.1002/adma.201306116.