User:StefanoElli/sandbox1

From Wikipedia, the free encyclopedia
Polycatenane model.[1]

A polycatenane[2] is a chemical substance that, like polymers, is chemically constituted by a large number of units. These units are made up of concatenated rings into a chain-like structure.

It consists of mechanically linked catenane[3] structures, via topological Hopf links[4], resulting in a higher dimensionality than the repeating unit.[5] They are a class of catenanes where the number of macrocycles[6] is more than two and as catenanes they belong to the big family of mechanically interlocked molecular architectures (MIMAs).[7][8]

Reciprocal degree of motion of polycatenanes rings.

The characteristic feature of a polycatenane compound, that distinguishes it from other polymers, is the presence of mechanical bonds[7][9][10] in addition to covalent bonds. The rings in this chain-like structure can be separated only when high energy is provided to break at least a covalent bond of the macrocycle. [n]-Catenanes (for large n), which consist solely of the mechanically interlocked cyclic components, can be viewed as “optimized” polycatenanes. The main difference between poly-[2]-catenanes[11] and poly-[n]-catenanes[1][12] is the repeating unit, as a monomer it is for the polymer. In the first case the monomer is made of two interlocked rings that reapeat continuously in the final polycatenane, while in the latter case there is only one ring that repeat the interlocking process for a large number of times. If the rings of the polycatenane are all of the same type, it can be defined as a homocatenane while if the subunits are different it is defined as heterocatenane.

As a chain, the degree of motion of these structures is very high, greater then a usual polymer, because the rings possess a reciprocal rotational, elongational and rocking motion.[1] This flexibility is retained even if the macrocycles themselves are very rigid units, because the mobility is given by the ability of the rings to move with respect to each other. This mobility influences the final properties of the material (mechanical, rheological, thermal...), and provides a dynamic behaviour.[13]

Classification[edit]

Four classes of polycatenanes

Depending on the location of the catenane structures in the polymer chain, the polycatenanes can be divided into main-chain polycatenanes and side-chain polycatenanes.[2][7][14]

Main-chain polycatenanes are linear catenanes in which the rings are one interlocked one another in a large number of units. They can also be a serie of oligomers linked physically even if not interlocked together. The stability of the structure is not only given by mechanical bonds but also hydrogen bonds and π-π interactions between the rings.[2]

On the other hand, the Side-Chain Polycatenanes, are polycatenanes with ramifications where more oligomers are connected on the same cycle with respect to the main backbone. This type of catenane is synthesised functionalizing the macrocycles so that there is a directionality with the possibility to control the ramification.[2]

There are other types of polycatenanes like the ones based on cyclic polymers[15], where the macrocyles are interlocked to the cyclic polymers, or the polycatenane networks[16], when catenanes are interlocked to each other into a net.

Catenated nanocages[edit]

The basic unit of the polycatenane can differ from the relatively simple organic macrocycle. When organic and inorganic building blocks come together can form a coordination cages (or macromolecular cages) that can interlock one another to form a polycatenane structure.[17] The mechanism is still unexplored but generally the subunits self-assemble[18][19] into a 0D cage and, in a concerted process, they interlock together into a linear[20] or more intricate catenane structure.[21] Sometimes the catenated cages structure is more stable with respect to the monomeric cage state, and it can be formed passing through a favored reaction intermediate.[22] The synthesis can follow a statistical or a directed routes, forming more or less product[23], but there are some cases when post-synthetic modifications can increase the product yields.[24] Catenated cages can be applied in a wide range of application due to the high presence of voids.[25]

Synthesis and applications[edit]

Synthesis[edit]

The synthesis of polycatenanes is considered a very challenging task. The formation of poly-[2]-catenanes can be achieved by polymerization of functionalized [2]-catenanes.[26] Also the synthesis of [3]-catenanes, [5]-catenanes, [6]-catenanes and [7]-catenanes is reported in many articles.[27][28] The synthesis of poly-[n]-catenanes has instead some practical issues.[29][30] To this purpose, molecular dynamic simulation is very used as a tool for the design of the optimal synthetic path toward the desired product by predicting the final topology.[31][13]

There are two main synthetic routes: the Statistical approach and the Template-Directed approach.[32]

The statistical approach[33][34] is based on a stochastic methodology. When the reactants are toghether, there is a probability that they will fit together first and then close on top of each other in a process of cyclization. The catenation of two rings into a catenane is already complex, thus, as expected, the interlocking of multiple cycles into a polycatenane is statistically improbable. Being an unfavoured entropically process the product is obtained in very small amount. Also, the cyclization process requires high dilutions, but the elongation of the chain is favoured at high concentrations, making the synthesis even more difficult.[33][34]

Example of Template-Directed Clipping Approach for the Synthesis of Catenanes.[26]

The Template directed approach[32][35] is based on the host-guest interactions that can direct the cyclization of preorganized linear unit upon the existing macrocycle. These interactions can be hydrogen bonds, π-π interactions, hydrophobic interactions or metal ions coordinations. In this way the synthesis can be enthalpy-driven, obtaining quantitative results.[32][35]

The yield and selectivity are restrained by the kinetic or thermodynamic control of the reaction.[36]

Generally the kinetic control[37] induces the formation of a product after short reaction times because it is favoured by irreversible reactions (or equilibrium reaction moved very much toward the formation of the products). The thermodynamic product[38] is obtained for longer reaction times for reversible processes. In this case the units have the time to rearrange themselves toward the most stable state, in a sort of error-checking process. This is obtained by breaking covalent and coordination bonds and forming the most stable ones.[39]

Applications[edit]

Given that polycatenanes are a relatively recent field of study, the properties of these materials are not yet fully explored and understood.[40] The type of bonds that caracterize the whole structure (covalent, non covalent, mechanical bonds...), the degree of mobility of the chain, the interactions between different chains and the fraction of voids of the catenanes are all factors that contribute to the final properties. As they can be strictly related to the family of Metal Organic Frameworks, the catenanes share all the potential applications of this class of compunds. Among these, there are applications in biomedicine[41], catalysis[42], as conducting bridges or in electronic devices[43], sensing[44] [45] or in very recent and rising fields like molecular machines.[46][47]

See also[edit]

References[edit]

  1. ^ a b c Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong; Wojtecki, Rudy J.; de Pablo, Juan J.; Hore, Michael J. A.; Rowan, Stuart J. (2017-12-15). "Poly[ n ]catenanes: Synthesis of molecular interlocked chains". Science. 358 (6369): 1434–1439. doi:10.1126/science.aap7675. ISSN 0036-8075.
  2. ^ a b c d Z.Niu and Harry.W. Gibson (2009). "Polycatenanes". Chem. Rev. 109 (11): 6024–6046. doi:10.1021/cr900002h. PMID 19670889.
  3. ^ Gil-Ramírez, Guzmán; Leigh, David A.; Stephens, Alexander J. (2015-05-07). "Catenanes: Fifty Years of Molecular Links". Angewandte Chemie International Edition. 54 (21): 6110–6150. doi:10.1002/anie.201411619. ISSN 1433-7851.
  4. ^ Flapan, Erica (2000). When Topology Meets Chemistry: A Topological Look at Molecular Chirality. Outlooks. Cambridge: Cambridge University Press. doi:10.1017/cbo9780511626272. ISBN 978-0-521-66254-3.
  5. ^ Carlucci, Lucia; Ciani, Gianfranco; Proserpio, Davide M. (November 2003). "Polycatenation, polythreading and polyknotting in coordination network chemistry". Coordination Chemistry Reviews. 246 (1–2): 247–289. doi:10.1016/s0010-8545(03)00126-7. ISSN 0010-8545.
  6. ^ Davis, Frank; Higson, Séamus (2011). Macrocycles: construction, chemistry, and nanotechnology applications. Chichester: Wiley. ISBN 978-1-119-98993-6.
  7. ^ a b c Fang, Lei; Olson, Mark A.; Benítez, Diego; Tkatchouk, Ekaterina; Goddard III, William A.; Stoddart, J. Fraser (2010). "Mechanically bonded macromolecules". Chem. Soc. Rev. 39 (1): 17–29. doi:10.1039/B917901A. ISSN 0306-0012.
  8. ^ Amabilino, David B.; Stoddart, J. Fraser (December 1995). "Interlocked and Intertwined Structures and Superstructures". Chemical Reviews. 95 (8): 2725–2828. doi:10.1021/cr00040a005. ISSN 0009-2665.
  9. ^ Stoddart, J. Fraser (2009). "The chemistry of the mechanical bond". Chemical Society Reviews. 38 (6): 1802. doi:10.1039/b819333a. ISSN 0306-0012.
  10. ^ Bruns, Carson J.; Stoddart, J. F.; Stoddart, James Fraser (2017). The nature of the mechanical bond: from molecules to machines. Hoboken, New Jersey: John Wiley & Sons. ISBN 978-1-119-04400-0.
  11. ^ Xing, Hao; Li, Zhandong; Wang, Wenbo; Liu, Peiren; Liu, Junkai; Song, Yu; Wu, Zi Liang; Zhang, Wenke; Huang, Feihe (February 2020). "Mechanochemistry of an Interlocked Poly[2]catenane: From Single Molecule to Bulk Gel". CCS Chemistry. 2 (1): 513–523. doi:10.31635/ccschem.019.20190043. ISSN 2096-5745.
  12. ^ Geerts, Yves (1999-06-24), Sauvage, J.‐P.; Dietrich‐Buchecker, C. (eds.), "Polycatenanes, Poly[2]catenanes, and Polymeric Catenanes", Molecular Catenanes, Rotaxanes and Knots (1 ed.), Wiley, pp. 247–276, doi:10.1002/9783527613724.ch10, ISBN 978-3-527-29572-2, retrieved 2023-07-05
  13. ^ a b Rauscher, Phillip M.; Schweizer, Kenneth S.; Rowan, Stuart J.; de Pablo, Juan J. (2020-06-07). "Dynamics of poly[ n ]catenane melts". The Journal of Chemical Physics. 152 (21). doi:10.1063/5.0007573. ISSN 0021-9606.
  14. ^ Encyclopedia of polymeric nanomaterials. Vol. 3: Pm - Z. Heidelberg Berlin: Springer-Reference. 2015. pp. 1796–1802. ISBN 978-3-642-29647-5.
  15. ^ Semlyen, J. A.; Wood, B. R.; Hodge, P. (September 1994). "Cyclic polymers: past, present and future". Polymers for Advanced Technologies. 5 (9): 473–478. doi:10.1002/pat.1994.220050902.
  16. ^ Hart, Laura F.; Lenart, William R.; Hertzog, Jerald E.; Oh, Jongwon; Turner, Wilson R.; Dennis, Joseph M.; Rowan, Stuart J. (2023-06-07). "Doubly Threaded Slide-Ring Polycatenane Networks". Journal of the American Chemical Society. 145 (22): 12315–12323. doi:10.1021/jacs.3c02837. ISSN 0002-7863.
  17. ^ Frank, Marina; Johnstone, Mark D.; Clever, Guido H. (2016-09-26). "Interpenetrated Cage Structures". Chemistry - A European Journal. 22 (40): 14104–14125. doi:10.1002/chem.201601752.
  18. ^ Constable, Edwin C.; Zhang, Guoqi; Housecroft, Catherine E.; Zampese, Jennifer A. (2011). "Zinc(ii) coordination polymers, metallohexacycles and metallocapsules—do we understand self-assembly in metallosupramolecular chemistry: algorithms or serendipity?". CrystEngComm. 13 (22): 6864. doi:10.1039/c1ce05884c. ISSN 1466-8033.
  19. ^ Westcott, Aleema; Fisher, Julie; Harding, Lindsay P.; Rizkallah, Pierre; Hardie, Michaele J. (2008-02-16). "Self-Assembly of a 3-D Triply Interlocked Chiral [2]Catenane". Journal of the American Chemical Society. 130 (10): 2950–2951. doi:10.1021/ja8002149. ISSN 0002-7863.
  20. ^ Heine, Johanna; Schmedt auf der Günne, Jörn; Dehnen, Stefanie (2011-07-06). "Formation of a Strandlike Polycatenane of Icosahedral Cages for Reversible One-Dimensional Encapsulation of Guests". Journal of the American Chemical Society. 133 (26): 10018–10021. doi:10.1021/ja2030273. ISSN 0002-7863.
  21. ^ Kuang, Xiaofei; Wu, Xiaoyuan; Yu, Rongmin; Donahue, James P.; Huang, Jinshun; Lu, Can-Zhong (2010-04-11). "Assembly of a metal–organic framework by sextuple intercatenation of discrete adamantane-like cages". Nature Chemistry. 2 (6): 461–465. doi:10.1038/nchem.618. ISSN 1755-4330.
  22. ^ Xu, Shijun; Li, Pan; Li, Zi-Ying; Yu, Chunyang; Liu, Xiaoyun; Liu, Zhiqiang; Zhang, Shaodong (July 2021). "Catenated Cages Mediated by Enthalpic Reaction Intermediates". CCS Chemistry. 3 (7): 1838–1850. doi:10.31635/ccschem.020.202000360. ISSN 2096-5745.
  23. ^ Wu, Yong; Guo, Qing-Hui; Qiu, Yunyan; Weber, Jacob A.; Young, Ryan M.; Bancroft, Laura; Jiao, Yang; Chen, Hongliang; Song, Bo; Liu, Wenqi; Feng, Yuanning; Zhao, Xingang; Li, Xuesong; Zhang, Long; Chen, Xiao-Yang (2022-03-22). "Syntheses of three-dimensional catenanes under kinetic control". Proceedings of the National Academy of Sciences. 119 (12). doi:10.1073/pnas.2118573119. ISSN 0027-8424. PMC 8944772. PMID 35290119.{{cite journal}}: CS1 maint: PMC format (link)
  24. ^ Li, Pan; Xu, Shijun; Yu, Chunyang; Li, Zi‐Ying; Xu, Jianping; Li, Zi‐Mu; Zou, Lingyi; Leng, Xuebing; Gao, Shan; Liu, Zhiqiang; Liu, Xiaoyun; Zhang, Shaodong (2020-04-27). "De Novo Construction of Catenanes with Dissymmetric Cages by Space‐Discriminative Post‐Assembly Modification". Angewandte Chemie International Edition. 59 (18): 7113–7121. doi:10.1002/anie.202000442. ISSN 1433-7851.
  25. ^ Cheng, Liwei; Liang, Chengyu; Liu, Wei; Wang, Yaxing; Chen, Bin; Zhang, Hailong; Wang, Yanlong; Chai, Zhifang; Wang, Shuao (2020-09-03). "Three-Dimensional Polycatenation of a Uranium-Based Metal–Organic Cage: Structural Complexity and Radiation Detection". Journal of the American Chemical Society. 142 (38): 16218–16222. doi:10.1021/jacs.0c08117. ISSN 0002-7863.
  26. ^ a b Li, Ziyong; Liu, Wenju; Wu, Jishan; Liu, Sheng Hua; Yin, Jun (2012-08-17). "Synthesis of [2]Catenanes by Template-Directed Clipping Approach". The Journal of Organic Chemistry. 77 (16): 7129–7135. doi:10.1021/jo3012804. ISSN 0022-3263.
  27. ^ Fujita, Makoto; Ogura, Katsuyuki (March 1996). "Self-assembling [2]catenanes: molecular magic rings". Supramolecular Science. 3 (1–3): 37–44. doi:10.1016/0968-5677(96)00004-1. ISSN 0968-5677.
  28. ^ Amabilino, David B.; Ashton, Peter R.; Balzani, Vincenzo; Boyd, Sue E.; Credi, Alberto; Lee, Ju Young; Menzer, Stephan; Stoddart, J. Fraser; Venturi, Margherita; Williams, David J. (1998-04-28). "Oligocatenanes Made to Order1". Journal of the American Chemical Society. 120 (18): 4295–4307. doi:10.1021/ja9720873. ISSN 0002-7863.
  29. ^ Clarkson, Guy J; Leigh, David A; Smith, Richard A (1998-12-01). "From catenanes to mechanically-linked polymers". Current Opinion in Solid State and Materials Science. 3 (6): 579–584. doi:10.1016/S1359-0286(98)80029-6. ISSN 1359-0286.
  30. ^ Liu, Guancen; Rauscher, Phillip M.; Rawe, Benjamin W.; Tranquilli, Marissa M.; Rowan, Stuart J. (2022). "Polycatenanes: synthesis, characterization, and physical understanding". Chemical Society Reviews. 51 (12): 4928–4948. doi:10.1039/D2CS00256F. ISSN 0306-0012.
  31. ^ Lei, Huanqing; Zhang, Jianguo; Wang, Liming; Zhang, Guojie (2021-01-06). "Dimensional and shape properties of a single linear polycatenane: Effect of catenation topology". Polymer. 212: 123160. doi:10.1016/j.polymer.2020.123160. ISSN 0032-3861.
  32. ^ a b c Raymo, Françisco M.; Stoddart, J. Fraser (1999-06-11). "Interlocked Macromolecules". Chemical Reviews. 99 (7): 1643–1664. doi:10.1021/cr970081q. ISSN 0009-2665.
  33. ^ a b Agam, Giora; Zilkha, Albert (August 1976). "Synthesis of a catenane by a statistical double-stage method". Journal of the American Chemical Society. 98 (17): 5214–5216. doi:10.1021/ja00433a027. ISSN 0002-7863.
  34. ^ a b Harrison, I. T. (1972). "The effect of ring size on threading reactions of macrocycles". Journal of the Chemical Society, Chemical Communications (4): 231. doi:10.1039/c39720000231. ISSN 0022-4936.
  35. ^ a b Li, Ziyong; Liu, Wenju; Wu, Jishan; Liu, Sheng Hua; Yin, Jun (2012-08-17). "Synthesis of [2]Catenanes by Template-Directed Clipping Approach". The Journal of Organic Chemistry. 77 (16): 7129–7135. doi:10.1021/jo3012804. ISSN 0022-3263.
  36. ^ Dichtel, William R.; Miljanić, Ognjen Š.; Zhang, Wenyu; Spruell, Jason M.; Patel, Kaushik; Aprahamian, Ivan; Heath, James R.; Stoddart, J. Fraser (2008-12-16). "Kinetic and Thermodynamic Approaches for the Efficient Formation of Mechanical Bonds". Accounts of Chemical Research. 41 (12): 1750–1761. doi:10.1021/ar800067h. ISSN 0001-4842.
  37. ^ Wu, Yong; Guo, Qing-Hui; Qiu, Yunyan; Weber, Jacob A.; Young, Ryan M.; Bancroft, Laura; Jiao, Yang; Chen, Hongliang; Song, Bo; Liu, Wenqi; Feng, Yuanning; Zhao, Xingang; Li, Xuesong; Zhang, Long; Chen, Xiao-Yang (2022-03-22). "Syntheses of three-dimensional catenanes under kinetic control". Proceedings of the National Academy of Sciences. 119 (12). doi:10.1073/pnas.2118573119. ISSN 0027-8424. PMC 8944772. PMID 35290119.{{cite journal}}: CS1 maint: PMC format (link)
  38. ^ Olson, Mark A.; Coskun, Ali; Fang, Lei; Basuray, Ashish N.; Stoddart, J. Fraser (2010-04-19). "Polycatenation under Thermodynamic Control". Angewandte Chemie. 122 (18): 3219–3224. doi:10.1002/ange.201000421. ISSN 0044-8249.
  39. ^ Sartori, Pablo; Pigolotti, Simone (2015-12-10). "Thermodynamics of Error Correction". Physical Review X. 5 (4): 041039. doi:10.1103/PhysRevX.5.041039.
  40. ^ Hart, Laura F.; Hertzog, Jerald E.; Rauscher, Phillip M.; Rawe, Benjamin W.; Tranquilli, Marissa M.; Rowan, Stuart J. (2021-02-12). "Material properties and applications of mechanically interlocked polymers". Nature Reviews Materials. 6 (6): 508–530. doi:10.1038/s41578-021-00278-z. ISSN 2058-8437.
  41. ^ Riebe, Jan; Niemeyer, Jochen (2021-10-07). "Mechanically Interlocked Molecules for Biomedical Applications". European Journal of Organic Chemistry. 2021 (37): 5106–5116. doi:10.1002/ejoc.202100749. ISSN 1434-193X.
  42. ^ van Dongen, Stijn F. M.; Cantekin, Seda; Elemans, Johannes A. A. W.; Rowan, Alan E.; Nolte, Roeland J. M. (2014). "Functional interlocked systems". Chem. Soc. Rev. 43 (1): 99–122. doi:10.1039/c3cs60178a. ISSN 0306-0012.
  43. ^ Chen, Hongliang; Fraser Stoddart, J. (September 2021). "From molecular to supramolecular electronics". Nature Reviews Materials. 6 (9): 804–828. doi:10.1038/s41578-021-00302-2. ISSN 2058-8437.
  44. ^ Langton, Matthew J.; Beer, Paul D. (2014-04-07). "Rotaxane and Catenane Host Structures for Sensing Charged Guest Species". Accounts of Chemical Research. 47 (7): 1935–1949. doi:10.1021/ar500012a. ISSN 0001-4842.
  45. ^ Caballero, Antonio; Zapata, Fabiola; Beer, Paul D. (September 2013). "Interlocked host molecules for anion recognition and sensing". Coordination Chemistry Reviews. 257 (17–18): 2434–2455. doi:10.1016/j.ccr.2013.01.016. ISSN 0010-8545.
  46. ^ Evans, Nicholas H.; Beer, Paul D. (2014). "Progress in the synthesis and exploitation of catenanes since the Millennium". Chemical Society Reviews. 43 (13): 4658. doi:10.1039/c4cs00029c. ISSN 0306-0012.
  47. ^ Aprahamian, Ivan (2020-03-03). "The Future of Molecular Machines". ACS Central Science. 6 (3): 347–358. doi:10.1021/acscentsci.0c00064. ISSN 2374-7943.

Further readings[edit]

External links[edit]