Jump to content

User:Wongbria/sandbox

From Wikipedia, the free encyclopedia
Formation of droplets with a T junction microfluidic device. The break off of a droplet comes from a drop in pressure as a drop emerges.[1]

Fluorescent quantum dots have been used to develop biosensing platforms[2] and drug delivery[3] in microfluidic devices. Quantum dots are useful due to their small size, precise excitation wavelength, and high quantum yield.[2][4] These are advantages over traditional dyes which may interfere with the activity of the studied compound.[4] However, the bulk creation and conjugation of quantum dots to molecules of interest remains a challenge[2][5]. Microfluidic devices that conjugate nucleotides with quantum dots have been designed to solve this issue by significantly reducing the conjugation time from two days[6] to minutes.[5] DNA-quantum dot conjugates are of importance to detect complementary DNA and miRNA in biological systems.[7]

Controlled electrocoalesence of two droplets. A smaller droplet flows faster than a larger one, catching up to the larger droplet. Upon application of an electric field, as the droplet pair flows through the electrodes, the droplets fuse.[8][9]
Diagram of flow focusing droplet formation device commonly used in microfluidic devices. Liquid flowing in from the left is pinched off into droplets by an oil flowing in from the top and bottom.[10]
Two droplets come together in this device. The pillars divide the flow into three channels: two side branches on the top and bottom, and a middle branch, through which the entire merged droplet flows to. The continuous phase between adjacent droplets is effectively filtered out by being allowed to flow through the top and bottom branches. The removal of the continuous phase between droplets facilitates droplet fusion.[11]
  1. ^ Garstecki, Piotr; Fuerstman, Michael J.; Stone, Howard A.; Whitesides, George M. (2006-02-24). "Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up". Lab on a Chip. 6 (3): 437–446. doi:10.1039/B510841A. ISSN 1473-0189.
  2. ^ a b c Vannoy, Charles H.; Tavares, Anthony J.; Noor, M. Omair; Uddayasankar, Uvaraj; Krull, Ulrich J. (2011/10). "Biosensing with Quantum Dots: A Microfluidic Approach". Sensors. 11 (10): 9732–9763. doi:10.3390/s111009732. {{cite journal}}: Check date values in: |date= (help)CS1 maint: unflagged free DOI (link)
  3. ^ Yang, C.-H.; Huang, K.-S.; Lin, Y.-S.; Lu, K.; Tzeng, C.-C.; Wang, E.-C.; Lin, C.-H.; Hsu, W.-Y.; Chang, J.-Y. (2009-04-07). "Microfluidic assisted synthesis of multi-functional polycaprolactone microcapsules: incorporation of CdTe quantum dots, Fe3O4 superparamagnetic nanoparticles and tamoxifen anticancer drugs". Lab on a Chip. 9 (7): 961–965. doi:10.1039/B814952F. ISSN 1473-0189.
  4. ^ a b Alivisatos, A. Paul; Gu, Weiwei; Larabell, Carolyn (2005-07-08). "Quantum Dots as Cellular Probes". Annual Review of Biomedical Engineering. 7 (1): 55–76. doi:10.1146/annurev.bioeng.7.060804.100432. ISSN 1523-9829.
  5. ^ a b Nguyen, Thu H.; Sedighi, Abootaleb; Krull, Ulrich J.; Ren, Carolyn L. (2020-03-27). "Multifunctional Droplet Microfluidic Platform for Rapid Immobilization of Oligonucleotides on Semiconductor Quantum Dots". ACS Sensors. 5 (3): 746–753. doi:10.1021/acssensors.9b02145.
  6. ^ Liu, Biwu; Liu, Juewen (2017-05-11). "Methods for preparing DNA-functionalized gold nanoparticles, a key reagent of bioanalytical chemistry". Analytical Methods. 9 (18): 2633–2643. doi:10.1039/C7AY00368D. ISSN 1759-9679.
  7. ^ Su, Shao; Fan, Jinwei; Xue, Bing; Yuwen, Lihui; Liu, Xingfen; Pan, Dun; Fan, Chunhai; Wang, Lianhui (2014-01-09). "DNA-Conjugated Quantum Dot Nanoprobe for High-Sensitivity Fluorescent Detection of DNA and micro-RNA". ACS Applied Materials & Interfaces. 6 (2): 1152–1157. doi:10.1021/am404811j. ISSN 1944-8244.
  8. ^ Ahn, Keunho; Agresti, Jeremy; Chong, Henry; Marquez, Manuel; Weitz, D. A. (2006-06-26). "Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels". Applied Physics Letters. 88 (26): 264105. doi:10.1063/1.2218058. ISSN 0003-6951.
  9. ^ Priest, Craig; Herminghaus, Stephan; Seemann, Ralf (2006-09-25). "Controlled electrocoalescence in microfluidics: Targeting a single lamella". Applied Physics Letters. 89 (13): 134101. doi:10.1063/1.2357039. ISSN 0003-6951.
  10. ^ Anna, Shelley L.; Bontoux, Nathalie; Stone, Howard A. (2003-01-15). "Formation of dispersions using "flow focusing" in microchannels". Applied Physics Letters. 82 (3): 364–366. doi:10.1063/1.1537519. ISSN 0003-6951.
  11. ^ Niu, Xize; Gulati, Shelly; Edel, Joshua B.; deMello, Andrew J. (2008-11-01). "Pillar-induced droplet merging in microfluidic circuits". Lab on a Chip. 8 (11): 1837–1841. doi:10.1039/B813325E. ISSN 1473-0189.