Jump to content

William J. Pietro

From Wikipedia, the free encyclopedia

William Joseph Pietro (born 1956) is an American/Canadian research scientist working in quantum chemistry, molecular electronics, and molecular machines.

Education

[edit]

Pietro was born in Jersey City, New Jersey. His education includes a B.S. in chemistry from the Brooklyn Polytechnic Institute of New York, a Ph.D. in chemistry from the University of California, Irvine, and a postdoctoral fellowship at Northwestern University.

Career

[edit]

Pietro was one of the founding authors of both Gaussian and Spartan electronic structure software packages.[1][2] Pietro and co-workers Robert Hout and Warren Hehre invented the first algorithm for the high-resolution visualization of molecular orbitals.[3][4][5] Working in collaboration with John Pople and Warren Hehre, Pietro developed the first split-valence basis sets for transition metals and higher-row main-group elements.[6][7][8]

Between 1985 and 1991, Pietro was a professor of chemistry at the University of Wisconsin–Madison, where his research group pioneered the first working molecular diode.[9][10]

Pietro is a professor of chemistry at York University researching theoretical aspects of electron transfer reactions in transition metal complexes.[11][12][13][14] and the quantum dynamics of molecular[15][16][17][18][19][20] and biomolecular machines.[21][22]

References

[edit]
  1. ^ GAUSSIAN, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana, 1984. Available today commercially through Gaussian, Inc, Wallinford, CT.
  2. ^ SPARTAN, 1993. Available commercially through Wavefunction, Inc, Irvine, CA.
  3. ^ R. F. Hout, Jr., W. J. Pietro, and W. J. Hehre, Orbital Photography, J. Comp. Chem, 4, 276, 1983.
  4. ^ A Pictorial Approach to Molecular Structure and Reactivity, R. F. Hout, Jr., W. J. Pietro, and W. J. Hehre, New York: Wiley-Interscience, 1984.
  5. ^ PHOTO-MO, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana, 1984.
  6. ^ M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, and W. J. Hehre, Self-Consistent Molecular Orbital Methods. 22. Small Split-Valence Basis Sets for Second-Row Elements, J. Am. Chem. Soc., 104, 2797, 1982.
  7. ^ M. M. Francl, W. J. Pietro, J. S. Binkley, D. J. DeFrees, J. A. Pople, W. J. Hehre, and M. S. Gordon, A Polarization Basis Set for Second-Row Elements, J. Chem. Phys., 76, 3654, 1982.
  8. ^ W. J. Pietro, M. M. Francl, W. J. Hehre, J. S. Binkley, D. J. DeFrees, and J. A. Pople, Self-Consistent Molecular Orbital Methods. 24. Small Supplemented Split-Valence Basis Sets for Second-Row Elements, J. Am. Chem. Soc., 104, 5039, 1982.
  9. ^ T. L. Anderson, G. C. Komplin, and W. J. Pietro, Rectifying Junctions in Peripherally-Substituted Metallophthalocyanine Bilayer Films, J. Phys. Chem., 97, 6577, 1983.
  10. ^ W. J. Pietro, Rectifying Junctions Based on Metallophthalocyanine Thin Films, Adv. Mater., 6, 239, 1994.
  11. ^ S. S. Fielder, M. C. Osborne, A. B. P. Lever, and W. J. Pietro, First Principles Interpretation of Ligand Electrochemical (EL(L)) Parameters; Factorization of the  and -Donaor and -Acceptor Capabilities, J. Am. Chem. Soc, 117, 6990, 1995.
  12. ^ S. Lu, V. V. Strelets, M. F. Ryan, W. J. Pietro, and A. B. P. Lever, Electrochemical Parameterization in Sandwich Complexes of the First-Row Transition Metals, Inorg. Chem., 35, 1013, 1996.
  13. ^ Modelling Ligand Electrochemical Parameters by Repulsion-Corrected Eigenvalues, P. Kiani, E. S. Dodsworth, A. B. P. Lever, and W. J. Pietro, J. Comp. Chem., http://doi.org/10.1002/jcc.26536, 2021.
  14. ^ W. J. Pietro and A. B. P. Lever, A Ligand Electrochemical Parameter Approach to Moleculr Design, -Donation, -Backdonation, and Other Metrics in Ruthenium Dinitrogen Complexes, Inorg. Chem., 61, 1869, 2022.
  15. ^ J. G. C. Veinot, J. Galloro, L. Pugliese, R. Pestrin, and W. J. Pietro, Surface Functionalization of Cadmium Sulfide Quantum Confined Nanoclusters. 5. Evidence of Facile Surface-Core Electronic Communication in the Photodecomposition Mechanism of Functionalized Quantum Dots, Chem. Mater., 11, 642, 1999.
  16. ^ A. A. Farah, C. Dares, and W. J. Pietro, Using a Push-Pull Azobenzene Haptan to Probe Surface-Core Electronic Communication in Surface Functionalized CdS Quantum Dots, J. Phys. Chem, invited paper, 114, 20410, 2010.
  17. ^ X. Chen., M. G. Organ, and W. J. Pietro, One-Pot Synthesis of Size-Controlled Amine-Functionalized Core-Shell Magnetic Nanoparticles for use in Microfluidic Separations, J. Nanoscience, Adv. Technol, 1, 25, 2017.
  18. ^ X. Chen., M. G. Organ, and W. J. Pietro, A Facile Controlled Preparation Method of Multifunctional Core-Shell Magnetic Nanoparticles, and their Potential Use in Microfluidic Separations, J. Nanoscience, Adv. Technol, 2, 5, 2017.
  19. ^ K. E. Edwards, O. Mermut, W. J. Pietro, and C. J. Barrett, Optical and Computational Studies of the trans – cis Reversible Isomerization of the Commercial Bisazo Dye Bismarck Brown Y., Phys. Chem. Chem. Phys., 25, 5673, 2023.
  20. ^ M. Kim, C. Hillel, K. Edwards, T. H. Borchers, O. Mermut, W. J. Pietro, and C. J. Barrett, Azo Dye Polyelectrolyte Multilayer Films Reversibly Re-soluble with Visible Light, Frontiers in Materials, 11, https://doi.org/10.3389/fmats.2024.1334863, 2024.
  21. ^ W. J. Pietro and O Mermut, A SiPM-Enabled Delayed Fluorescence Photon Counting Device: Climatic Plant Stress Biosensing, Biosensors, 12, 817, 2022.
  22. ^ Geiger Mode Single Photon Counting: An Example Exploring Delayed Fluorescence in Plants, C. W. Schruder, C. J. Barrett, W. J. Pietro, and O. Mermut, J. Chem. Ed., 100, 3991, 2023.