Zeta Cephei
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Cepheus |
Right ascension | 22h 10m 51.277s[1] |
Declination | +58° 12′ 04.55″[1] |
Apparent magnitude (V) | 3.35[2] |
Characteristics | |
Spectral type | K1.5 Ib[3] |
B−V color index | +1.55[2] |
Variable type | Eclipsing binary?[4] |
Astrometry | |
Proper motion (μ) | RA: 13.52 ± 0.10[1] mas/yr Dec.: 5.24 ± 0.09[1] mas/yr |
Parallax (π) | 3.90 ± 0.10 mas[1] |
Distance | 840 ± 20 ly (256 ± 7 pc) |
Absolute magnitude (MV) | −4.7[5] |
Details | |
Radius | 230[6] R☉ |
Luminosity | 5,660[7] L☉ |
Surface gravity (log g) | 0.75[7] cgs |
Temperature | 4,000[2] K |
Metallicity [Fe/H] | +0.22[7] dex |
Rotational velocity (v sin i) | 10.64[8] km/s |
Other designations | |
Database references | |
SIMBAD | data |
Zeta Cephei (ζ Cep, ζ Cephei) is a star in the constellation of Cepheus. Zeta Cephei marks the left shoulder of Cepheus, the King of Joppa (Ethiopia).[clarification needed] It is one of the fundamental stars of the MK spectral sequence, defined as type K1.5 Ib.
Zeta Cephei is an orange supergiant star with a surface temperature of 3,853 K and eight times more massive than the Sun. The luminosity of Zeta Cephei is approximately 3,600 times that of the Sun. At a distance of about 840 light-years,[1] Zeta Cephei has an apparent magnitude (m) of 3.4 and an absolute magnitude (M) of -4.7. The star has a metallicity approximately 1.6 times that of the Sun; i.e., it contains 1.6 times as much heavy-element material as the Sun.
Hekker et al. (2008) have detected a periodicity of 533 days, hinting at the possible presence of an as yet unseen companion.[9] It is listed as a possible eclipsing binary with a very small amplitude.[4]
At the edge of the 8 to 10 solar mass (M☉) limit at which stars develop iron cores and then explode as supernovae, Zeta Cephei's most likely fate is to produce a very massive white dwarf near the Chandrasekhar limit (1.4 M☉) at which such dense remnants can survive. If Zeta Cephei is a binary star; i.e., if there is a stellar companion, and it is close enough to feed sufficient matter to the white-dwarf-to-be, it is marginally possible that the limit could be overflowed, resulting in the white dwarf's collapse and a Type Ia supernova explosion.[citation needed]
References
- ^ a b c d e f van Leeuwen, F. (2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357.Vizier catalog entry
- ^ a b c Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not As Cool As We Thought". The Astrophysical Journal. 628 (2): 973. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901.
- ^ Morgan, W. W.; Keenan, P. C. (1973). "Spectral Classification". Annual Review of Astronomy and Astrophysics. 11: 29. Bibcode:1973ARA&A..11...29M. doi:10.1146/annurev.aa.11.090173.000333.
- ^ a b Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007–2013)". VizieR On-line Data Catalog: B/gcvs. Originally published in: 2009yCat....102025S. 1: 02025. Bibcode:2009yCat....102025S.
- ^ Luck, R. E. (1982). "The chemical composition of late-type supergiants. IV - Homogeneous abundances and galactic metallicity trends". Astrophysical Journal. 256: 177. Bibcode:1982ApJ...256..177L. doi:10.1086/159895.
- ^ Wesselink, A. J.; Paranya, K.; Devorkin, K. (1972). "Catalogue of stellar dimensions". Astronomy and Astrophysics Supplement. 7: 257. Bibcode:1972A&AS....7..257W.
- ^ a b c Mallik, Sushma V. (December 1999), "Lithium abundance and mass", Astronomy and Astrophysics, 352: 495–507, Bibcode:1999A&A...352..495M
- ^ Hekker, S.; Meléndez, J. (2007). "Precise radial velocities of giant stars. III. Spectroscopic stellar parameters". Astronomy and Astrophysics. 475 (3): 1003. arXiv:0709.1145. Bibcode:2007A&A...475.1003H. doi:10.1051/0004-6361:20078233.
- ^ Hekker; et al. (2008). "Precise radial velocities of giant stars. IV. A correlation between surface gravity and radial velocity variation and a statistical investigation of companion properties". Astronomy and Astrophysics. 480 (1): 215–222. arXiv:0801.0741. Bibcode:2008A&A...480..215H. doi:10.1051/0004-6361:20078321.