Jump to content

Quantum invariant

From Wikipedia, the free encyclopedia

In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.[1][2][3]

List of invariants

[edit]

See also

[edit]

References

[edit]
  1. ^ a b Reshetikhin, N.; Turaev, V. G. (1991). "Invariants of 3-manifolds via link polynomials and quantum groups". Inventiones Mathematicae. 103 (3): 547–597. doi:10.1007/BF01239527. MR 1091619.
  2. ^ Kontsevich, Maxim (1993). "Vassiliev's knot invariants". Adv. Soviet Math. 16: 137.
  3. ^ Watanabe, Tadayuki (2007). "Knotted trivalent graphs and construction of the LMO invariant from triangulations". Osaka J. Math. 44 (2): 351. Retrieved 4 December 2012.
  4. ^ Letzter, Gail (2004). "Invariant differential operators for quantum symmetric spaces, II". arXiv:math/0406194.
  5. ^ Sawon, Justin (2000). "Topological quantum field theory and hyperkähler geometry". arXiv:math/0009222.
  6. ^ Petit, Jerome (1999). "The invariant of Turaev-Viro from Group category" (PDF). hal.archives-ouvertes.fr. Retrieved 2019-11-04.
  7. ^ Lawton, Sean (June 28, 2007). "Generators of -Character Varieties of Arbitrary Rank Free Groups" (PDF). The 7th KAIST Geometric Topology Fair. Archived from the original (PDF) on 20 July 2007. Retrieved 13 January 2022.

Further reading

[edit]
[edit]