Isothermal coordinates: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 71: Line 71:
*{{citation|last=Douady|first= Adrien|author-link=Adrien Douady|last2= Buff|first2= X.|title=Le théorème d'intégrabilité des structures presque complexes. [Integrability theorem for almost complex structures]|pages= 307–324|series=London Mathematical Society Lecture Note Series|volume= 274|year= 2000|publisher=Cambridge University Press}}
*{{citation|last=Douady|first= Adrien|author-link=Adrien Douady|last2= Buff|first2= X.|title=Le théorème d'intégrabilité des structures presque complexes. [Integrability theorem for almost complex structures]|pages= 307–324|series=London Mathematical Society Lecture Note Series|volume= 274|year= 2000|publisher=Cambridge University Press}}
{{unordered list|{{cite encyclopedia|author-link1=Carl Friedrich Gauss|last1=Gauss|first1=C. F.|year=1825|trans-title=General solution of the problem of mapping the parts of a given surface on another given surface in such a way that the mapping resembles what is depicted in the smallest parts|title=Allgemeine Auflösung der Aufgabe die Theile einer gegebenen Flache auf einer andern gegebnen Fläche so abzubilden, dass die Abbildung dem Abgebildeten in den kleinsten Theilen ähnlich wird|editor-link1=Heinrich Christian Schumacher|editor-last1=Schumacher|editor-first1=H. C.|encyclopedia=Astronomische Abhandlungen, Drittes Heft|location=Altona|pages=1–30|publisher=Hammerich und Heineking|url=https://books.google.com/books?id=pgizxQ8X-WUC}} Reprinted in:{{unordered list|{{cite book|last1=Gauss|first1=Carl Friedrich|year=2011|orig-year=1873|title=Werke: Volume 4|doi=10.1017/CBO9781139058254.005|publisher=[[Cambridge University Press]]|location=New York|series=Cambridge Library Collection|language=German|isbn=978-1-108-03226-1}}}} Translated to English in:{{unordered list|{{cite encyclopedia|last=Gauss|title=On conformal representation|year=1929|translator-last=Evans|translator-first=Herbert P.|url=https://archive.org/details/sourcebookinmath00smit|pages=463–475|encyclopedia=A source book in mathematics|editor-last1=Smith|editor-first1=David Eugene|editor-link1=David Eugene Smith|location=New York|publisher=[[McGraw-Hill Book Co.]]|jfm=55.0583.01|series=Source Books in the History of the Sciences}}}}}}
{{unordered list|{{cite encyclopedia|author-link1=Carl Friedrich Gauss|last1=Gauss|first1=C. F.|year=1825|trans-title=General solution of the problem of mapping the parts of a given surface on another given surface in such a way that the mapping resembles what is depicted in the smallest parts|title=Allgemeine Auflösung der Aufgabe die Theile einer gegebenen Flache auf einer andern gegebnen Fläche so abzubilden, dass die Abbildung dem Abgebildeten in den kleinsten Theilen ähnlich wird|editor-link1=Heinrich Christian Schumacher|editor-last1=Schumacher|editor-first1=H. C.|encyclopedia=Astronomische Abhandlungen, Drittes Heft|location=Altona|pages=1–30|publisher=Hammerich und Heineking|url=https://books.google.com/books?id=pgizxQ8X-WUC}} Reprinted in:{{unordered list|{{cite book|last1=Gauss|first1=Carl Friedrich|year=2011|orig-year=1873|title=Werke: Volume 4|doi=10.1017/CBO9781139058254.005|publisher=[[Cambridge University Press]]|location=New York|series=Cambridge Library Collection|language=German|isbn=978-1-108-03226-1}}}} Translated to English in:{{unordered list|{{cite encyclopedia|last=Gauss|title=On conformal representation|year=1929|translator-last=Evans|translator-first=Herbert P.|url=https://archive.org/details/sourcebookinmath00smit|pages=463–475|encyclopedia=A source book in mathematics|editor-last1=Smith|editor-first1=David Eugene|editor-link1=David Eugene Smith|location=New York|publisher=[[McGraw-Hill Book Co.]]|jfm=55.0583.01|series=Source Books in the History of the Sciences}}}}}}
*{{cite book|first=Y. |last=Imayoshi|first2=M.|last2=Taniguchi|title=An introduction to Teichmüller spaces|publisher=[[Springer-Verlag]]|location=Tokyo|year=1992|isbn=0-387-70088-9|mr=1215481|doi=10.1007/978-4-431-68174-8}}
*{{cite book|first=Y. |last=Imayoshi|first2=M.|last2=Taniguchi|title=An introduction to Teichmüller spaces|publisher=[[Springer-Verlag]]|location=Tokyo|year=1992|isbn=0-387-70088-9|mr=1215481|doi=10.1007/978-4-431-68174-8|zbl=0754.30001}}
*{{cite conference|first=A.|last=Korn|author-link1=Arthur Korn|title=Zwei Anwendungen der Methode der sukzessiven Annäherungen|year=1914|pages=215–229|doi=10.1007/978-3-642-50735-9_16|isbn=978-3-642-50426-6|editor-last1=Carathéodory|editor-first1=C.|editor-last2=Hessenberg|editor-first2=G.|editor-last3=Landau|editor-first3=E.|editor-last4=Lichtenstein|editor-first4=L.|book-title=Mathematische Abhandlungen Hermann Amandus Schwarz|publisher=[[Springer Science+Business Media|Springer]]|location=Berlin, Heidelberg|editor-link1=Constantin Carathéodory|editor-link2=Gerhard Hessenberg|editor-link3=Edmund Landau|editor-link4=Leon Lichtenstein}}
*{{cite conference|first=A.|last=Korn|author-link1=Arthur Korn|title=Zwei Anwendungen der Methode der sukzessiven Annäherungen|year=1914|pages=215–229|doi=10.1007/978-3-642-50735-9_16|isbn=978-3-642-50426-6|editor-last1=Carathéodory|editor-first1=C.|editor-last2=Hessenberg|editor-first2=G.|editor-last3=Landau|editor-first3=E.|editor-last4=Lichtenstein|editor-first4=L.|book-title=Mathematische Abhandlungen Hermann Amandus Schwarz|publisher=[[Springer Science+Business Media|Springer]]|location=Berlin, Heidelberg|editor-link1=Constantin Carathéodory|editor-link2=Gerhard Hessenberg|editor-link3=Edmund Landau|editor-link4=Leon Lichtenstein}}
*{{cite journal|last=Lagrange|first1=J.|author-link1=Joseph Lagrange|title=Sur la construction des cartes géographiques|year=1779|journal=Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Berlin|pages=161–210|url=https://books.google.com/books?id=U1ZFAAAAcAAJ}} Reprinted in:{{unordered list|{{cite encyclopedia|year=1867|title=Œuvres de Lagrange: tome 4|url=http://sites.mathdoc.fr/cgi-bin/oeitem?id=OE_LAGRANGE__4_637_0|location=Paris|publisher=Gauthier-Villars|language=French|editor-link1=Joseph Alfred Serret|editor-last1=Serret|editor-first1=J.-A.}}}}
*{{cite journal|last=Lagrange|first1=J.|author-link1=Joseph Lagrange|title=Sur la construction des cartes géographiques|year=1779|journal=Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Berlin|pages=161–210|url=https://books.google.com/books?id=U1ZFAAAAcAAJ}} Reprinted in:{{unordered list|{{cite encyclopedia|year=1867|title=Œuvres de Lagrange: tome 4|url=http://sites.mathdoc.fr/cgi-bin/oeitem?id=OE_LAGRANGE__4_637_0|location=Paris|publisher=Gauthier-Villars|language=French|editor-link1=Joseph Alfred Serret|editor-last1=Serret|editor-first1=J.-A.}}}}
*{{cite journal|first=Léon|last= Lichtenstein|author-link1=Leon Lichtenstein|title=Zur Theorie der konformen Abbildung. Konforme Abbildung nichtanalytischer, singularitätenfreier Flächenstücke auf ebene Gebiete|journal= Bulletin International de l'Académie des Sciences de Cracovie: Classe des Sciences Mathématiques et Naturelles. Série A: Sciences Mathématiques|year= 1916|pages= 192–217|jfm=46.0547.01|url=https://books.google.com/books?id=BWAWAQAAIAAJ}}
*{{cite journal|first=Léon|last= Lichtenstein|author-link1=Leon Lichtenstein|title=Zur Theorie der konformen Abbildung. Konforme Abbildung nichtanalytischer, singularitätenfreier Flächenstücke auf ebene Gebiete|journal= Bulletin International de l'Académie des Sciences de Cracovie: Classe des Sciences Mathématiques et Naturelles. Série A: Sciences Mathématiques|year= 1916|pages= 192–217|jfm=46.0547.01|url=https://books.google.com/books?id=BWAWAQAAIAAJ}}
*{{cite journal|first=Charles B.|last=Morrey|author-link=Charles B. Morrey, Jr.|title=On the solutions of quasi-linear elliptic partial differential equations|journal=Trans. Amer. Math. Soc.|year=1938|pages=126–166|doi=10.2307/1989904|volume=43|jstor=1989904|issue=1|publisher=American Mathematical Society|doi-access=free}}
*{{cite journal|first=Charles B.|last=Morrey|author-link=Charles B. Morrey, Jr.|title=On the solutions of quasi-linear elliptic partial differential equations|journal=Trans. Amer. Math. Soc.|year=1938|pages=126–166|doi=10.2307/1989904|volume=43|jstor=1989904|issue=1|publisher=American Mathematical Society|doi-access=free}}
*{{cite book|first=Michael|last= Spivak|author-link=Michael Spivak|title=A Comprehensive Introduction to Differential Geometry|volume= 4|edition= 3| publisher= Publish or Perish|pages= 314–346}}
*{{cite book|first=Michael|last= Spivak|author-link=Michael Spivak|title=A comprehensive introduction to differential geometry. Volume four|edition=Third edition of 1975 original| publisher= Publish or Perish, Inc.|mr=0532833|year=1999|zbl=1213.53001|isbn=0-914098-73-X}}
*{{cite book|first=Michael E.|last=Taylor|author-link=Michael E. Taylor|title=Partial Differential Equations: Basic Theory|publisher=Springer-Verlag|year=1996|isbn=0-387-94654-3|pages=376–378}}
*{{cite book|author-link1=Michael E. Taylor|first1=Michael E.|last1=Taylor|title=Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials|series=[[Mathematical Surveys and Monographs]]|volume=81|publisher=[[American Mathematical Society]]|location=Providence, RI|year=2000|zbl=0963.35211|isbn=0-8218-2633-6|doi=10.1090/surv/081|mr=1766415}}
*{{cite book|author-link1=Michael E. Taylor|first1=Michael E.|last1=Taylor|title=Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials|series=[[Mathematical Surveys and Monographs]]|volume=81|publisher=[[American Mathematical Society]]|location=Providence, RI|year=2000|zbl=0963.35211|isbn=0-8218-2633-6|doi=10.1090/surv/081|mr=1766415}}
*{{cite book|first1=Michael E.|last1=Taylor|author-link1=Michael E. Taylor|title=Partial differential equations I. Basic theory|edition=Second edition of 1996 original|series=Applied Mathematical Sciences|volume=115|publisher=[[Springer Science+Business Media|Springer]]|location=New York|year=2011|isbn=978-1-4419-7054-1|mr=2744150|doi=10.1007/978-1-4419-7055-8|zbl=1206.35002}}
{{refend}}
{{refend}}



Revision as of 19:38, 4 September 2022

In mathematics, specifically in differential geometry, isothermal coordinates on a Riemannian manifold are local coordinates where the metric is conformal to the Euclidean metric. This means that in isothermal coordinates, the Riemannian metric locally has the form

where is a positive smooth function. (If the Riemannian manifold is oriented, some authors insist that a coordinate system must agree with that orientation to be isothermal.)

Isothermal coordinates on surfaces were first introduced by Gauss. Korn and Lichtenstein proved that isothermal coordinates exist around any point on a two dimensional Riemannian manifold.

By contrast, most higher-dimensional manifolds do not admit isothermal coordinates anywhere; that is, they are not usually locally conformally flat. In dimension 3, a Riemannian metric is locally conformally flat if and only if its Cotton tensor vanishes. In dimensions > 3, a metric is locally conformally flat if and only if its Weyl tensor vanishes.


Isothermal coordinates on surfaces

Gauss (1825) proved the existence of isothermal coordinates on an arbitrary surface with a real analytic metric, following results of Lagrange (1779) on surfaces of revolution. Results for Hölder continuous metrics were obtained by Korn (1916) and Lichtenstein (1916). Later accounts were given by Morrey (1938), Ahlfors (1955), Bers (1952) and Chern (1955). A particularly simple account using the Hodge star operator is given in DeTurck & Kazdan (1981).

Beltrami equation

The existence of isothermal coordinates can be proved[1] by applying known existence theorems for the Beltrami equation, which rely on Lp estimates for singular integral operators of Calderón and Zygmund.[2][3] A simpler approach to the Beltrami equation has been given more recently by Adrien Douady.[4]

If the Riemannian metric is given locally as

then in the complex coordinate , it takes the form

where and are smooth with and . In fact

In isothermal coordinates the metric should take the form

with ρ smooth. The complex coordinate satisfies

so that the coordinates (u, v) will be isothermal if the Beltrami equation

has a diffeomorphic solution. Such a solution has been proved to exist in any neighbourhood where .

Existence via local solvability for elliptic partial differential equations

The existence of isothermal coordinates on a smooth two-dimensional Riemannian manifold is a corollary of the standard local solvability result in the analysis of elliptic partial differential equations. In the present context, the relevant elliptic equation is the condition for a function to be harmonic relative to the Riemannian metric. The local solvability then states that any point p has a neighborhood U on which there is a harmonic function u with nowhere-vanishing derivative.[5]

Isothermal coordinates are constructed from such a function in the following way.[6] Harmonicity of u is identical to the closedness of the differential 1-form defined using the Hodge star operator associated to the Riemannian metric. The Poincaré lemma thus implies the existence of a function v on U with By definition of the Hodge star, and are orthogonal to one another and hence linearly independent, and it then follows from the inverse function theorem that u and v form a coordinate system on some neighborhood of p. This coordinate system is automatically isothermal, since the orthogonality of and implies the diagonality of the metric, and the norm-preserving property of the Hodge star implies the equality of the two diagonal components.

Gaussian curvature

In the isothermal coordinates , the Gaussian curvature takes the simpler form

See also

Notes

  1. ^ Imayoshi & Taniguchi 1992, pp. 20–21
  2. ^ Ahlfors 1966, pp. 85–115
  3. ^ Imayoshi & Taniguchi 1992, pp. 92–104
  4. ^ Douady & Buff 2000
  5. ^ Taylor 1996, pp. 377–378; Bers, John & Schechter 1979, pp. 228–230
  6. ^ DeTurck & Kazdan 1981

References

  • Ahlfors, Lars V. (1952), "Conformality with respect to Riemannian metrics.", Ann. Acad. Sci. Fenn. Ser. A. I, 206: 1–22
  • Ahlfors, Lars V. (1966), Lectures on quasiconformal mappings, Van Nostrand
  • Bers, Lipman (1958). Riemann surfaces. Notes taken by Rodlitz, Esther and Pollack, Richard. Courant Institute of Mathematical Sciences at New York University. pp. 15–35.
  • Bers, Lipman; John, Fritz; Schechter, Martin (1979). Partial differential equations. Lectures in Applied Mathematics. Vol. 3A. American Mathematical Society. ISBN 0-8218-0049-3.
  • Chern, Shiing-shen (1955). "An elementary proof of the existence of isothermal parameters on a surface". Proceedings of the American Mathematical Society. 6 (5): 771–782. doi:10.2307/2032933. JSTOR 2032933.
  • DeTurck, Dennis M.; Kazdan, Jerry L. (1981). "Some regularity theorems in Riemannian geometry". Annales Scientifiques de l'École Normale Supérieure. Série 4. 14 (3): 249–260. doi:10.24033/asens.1405. ISSN 0012-9593. MR 0644518..
  • do Carmo, Manfredo (1976). Differential Geometry of Curves and Surfaces. Prentice Hall. ISBN 0-13-212589-7.
  • Douady, Adrien; Buff, X. (2000), Le théorème d'intégrabilité des structures presque complexes. [Integrability theorem for almost complex structures], London Mathematical Society Lecture Note Series, vol. 274, Cambridge University Press, pp. 307–324

External links