PANoptosis: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m link cytokine storm
m Updated content
Line 1: Line 1:
{{Short description|Inflammatory cell death pathway}}
{{Short description|Inflammatory cell death pathway}}
'''PANoptosis''' is an inflammatory cell death pathway. Genetic, molecular, and biochemical studies identified extensive crosstalk among the molecular components across cell death pathways in response to a variety of pathogens and innate immune triggers, leading to the conceptualization of PANoptosis.<ref name=":0">{{Cite web|title=Promising preclinical cancer therapy harnesses a newly discovered cell death pathway|url=https://www.stjude.org/media-resources/news-releases/2021-medicine-science-news/promising-preclinical-cancer-therapy-harnesses-a-newly-discovered-cell-death-pathway.html|access-date=2021-11-16|website=www.stjude.org|language=en}}</ref><ref name=":7">{{Cite web |title=ZBP1 links interferon treatment and dangerous inflammatory cell death during COVID-19 |url=https://www.stjude.org/media-resources/news-releases/2022-medicine-science-news/zbp1-links-interferon-treatment-and-cell-death-during-covid-19.html |access-date=2022-06-02 |website=www.stjude.org |language=en}}</ref> PANoptosis is defined as a unique innate immune inflammatory cell death pathway driven by caspases and RIPKs and regulated by multi protein PANoptosome complexes. PANoptosis is implicated in driving innate immune responses and inflammation in disease. PANoptosome formation and PANoptosis occur during pathogenic infections, including bacterial, viral, and fungal infections, as well as during inflammatory diseases and can be beneficial in the context of cancer.<ref name=":0" /><ref name=":7" /><ref name=":1">{{Cite web |title=The PANoptosome: a new frontier in innate immune responses |url=https://www.stjude.org/media-resources/news-releases/2021-medicine-science-news/the-panoptosome-a-new-frontier-in-innate-immune-responses.html |access-date=2021-11-16 |website=www.stjude.org |language=en}}</ref><ref name=":3">{{Cite web|title=In the lab, St. Jude scientists identify possible COVID-19 treatment|url=https://www.stjude.org/media-resources/news-releases/2020-medicine-science-news/in-the-lab-st-jude-scientists-identify-possible-covid-19-treatment.html|access-date=2021-11-16|website=www.stjude.org|language=en}}</ref><ref name=":2">{{Cite web |title=Discovering the secrets of the enigmatic caspase-6 |url=https://www.stjude.org/media-resources/news-releases/2020-medicine-science-news/discovering-the-secrets-of-the-enigmatic-caspase-6.html |access-date=2021-11-16 |website=www.stjude.org |language=en}}</ref><ref>{{Cite web|title=Breaking the dogma: Key cell death regulator has more than one way to get the job done|url=https://www.stjude.org/media-resources/news-releases/2019-medicine-science-news/key-cell-death-regulator-gets-job-done.html|access-date=2021-11-16|website=www.stjude.org|language=en}}</ref><ref name=":5">{{Cite journal|last1=Kuriakose|first1=Teneema|last2=Man|first2=Si Ming|last3=Malireddi|first3=R.K. Subbarao|last4=Karki|first4=Rajendra|last5=Kesavardhana|first5=Sannula|last6=Place|first6=David E.|last7=Neale|first7=Geoffrey|last8=Vogel|first8=Peter|last9=Kanneganti|first9=Thirumala-Devi|date=2016-08-05|title=ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways|journal=Science Immunology|volume=1|issue=2|pages=aag2045|doi=10.1126/sciimmunol.aag2045|issn=2470-9468|pmc=5131924|pmid=27917412}}</ref><ref>{{Cite journal|last1=Karki|first1=Rajendra|last2=Sharma|first2=Bhesh Raj|last3=Lee|first3=Ein|last4=Banoth|first4=Balaji|last5=Malireddi|first5=R.K. Subbarao|last6=Samir|first6=Parimal|last7=Tuladhar|first7=Shraddha|last8=Mummareddy|first8=Harisankeerth|last9=Burton|first9=Amanda R.|last10=Vogel|first10=Peter|last11=Kanneganti|first11=Thirumala-Devi|date=2020-06-18|title=Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer|journal=JCI Insight|volume=5|issue=12|doi=10.1172/jci.insight.136720|issn=2379-3708|pmc=7406299|pmid=32554929|doi-access=free}}</ref><ref name=":20">{{Cite web|title=Diet affects mix of intestinal bacteria and the risk of inflammatory bone disease|url=https://www.stjude.org/media-resources/news-releases/2014-medicine-science-news/diet-affects-mix-of-intestinal-bacteria-and-the-risk-of-inflammatory-bone-disease.html|access-date=2020-09-11|website=www.stjude.org|language=en}}</ref><ref name=":4">{{Cite journal|last1=Malireddi|first1=R. K. Subbarao|last2=Karki|first2=Rajendra|last3=Sundaram|first3=Balamurugan|last4=Kancharana|first4=Balabhaskararao|last5=Lee|first5=SangJoon|last6=Samir|first6=Parimal|last7=Kanneganti|first7=Thirumala-Devi|date=2021-07-21|title=Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth|journal=ImmunoHorizons|volume=5|issue=7|pages=568–580|doi=10.4049/immunohorizons.2100059|issn=2573-7732|pmc=8522052|pmid=34290111}}</ref><ref name=":6">{{Cite journal|last1=Karki|first1=Rajendra|last2=Sharma|first2=Bhesh Raj|last3=Tuladhar|first3=Shraddha|last4=Williams|first4=Evan Peter|last5=Zalduondo|first5=Lillian|last6=Samir|first6=Parimal|last7=Zheng|first7=Min|last8=Sundaram|first8=Balamurugan|last9=Banoth|first9=Balaji|last10=Malireddi|first10=R. K. Subbarao|last11=Schreiner|first11=Patrick|date=2021-01-07|title=Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes|journal=Cell|volume=184|issue=1|pages=149–168.e17|doi=10.1016/j.cell.2020.11.025|issn=1097-4172|pmc=7674074|pmid=33278357}}</ref><ref name=":8">{{Cite journal |last1=Karki |first1=Rajendra |last2=Lee |first2=SangJoon |last3=Mall |first3=Raghvendra |last4=Pandian |first4=Nagakannan |last5=Wang |first5=Yaqiu |last6=Sharma |first6=Bhesh Raj |last7=Malireddi |first7=Rk Subbarao |last8=Yang |first8=Dong |last9=Trifkovic |first9=Sanja |last10=Steele |first10=Jacob A. |last11=Connelly |first11=Jon P. |date=2022-05-19 |title=ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection |journal=Science Immunology |volume=7 |issue=74 |pages=eabo6294 |doi=10.1126/sciimmunol.abo6294 |issn=2470-9468 |pmid=35587515|pmc=9161373 }}</ref><ref>{{Cite journal |last1=Wang |first1=Yaqiu |last2=Pandian |first2=Nagakannan |last3=Han |first3=Joo-Hui |last4=Sundaram |first4=Balamurugan |last5=Lee |first5=SangJoon |last6=Karki |first6=Rajendra |last7=Guy |first7=Clifford S. |last8=Kanneganti |first8=Thirumala-Devi |date=2022-09-28 |title=Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method |journal=Cellular and Molecular Life Sciences |volume=79 |issue=10 |pages=531 |doi=10.1007/s00018-022-04564-z |issn=1420-9071 |pmc=9545391 |pmid=36169732}}</ref><ref name=":9">{{Cite journal |last1=Sundaram |first1=Balamurugan |last2=Pandian |first2=Nagakannan |last3=Mall |first3=Raghvendra |last4=Wang |first4=Yaqiu |last5=Sarkar |first5=Roman |last6=Kim |first6=Hee Jin |last7=Malireddi |first7=R.K. Subbarao |last8=Karki |first8=Rajendra |last9=Janke |first9=Laura J. |last10=Vogel |first10=Peter |last11=Kanneganti |first11=Thirumala-Devi |date=June 2023 |title=NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs |journal=Cell |volume=186 |issue=13 |pages=2783–2801.e20 |language=en |doi=10.1016/j.cell.2023.05.005|pmid=37267949 |pmc=10330523 |doi-access=free |pmc-embargo-date=June 22, 2024 }}</ref><ref name=":10">{{Cite web |title=St. Jude finds NLRP12 as a new drug target for infection, inflammation and hemolytic diseases |url=https://www.stjude.org/media-resources/news-releases/2023-medicine-science-news/st-jude-finds-nlrp12-as-a-new-drug-target.html |access-date=2023-06-02 |website=www.stjude.org |language=en}}</ref>
'''PANoptosis''' is a unique, innate immune, inflammatory, and lytic [[cell death]] pathway driven by [[Caspase|caspases]] and RIPKs and regulated by multiprotein PANoptosome complexes.<ref name=":10">{{Cite web |title=St. Jude finds NLRP12 as a new drug target for infection, inflammation and hemolytic diseases |url=https://www.stjude.org/media-resources/news-releases/2023-medicine-science-news/st-jude-finds-nlrp12-as-a-new-drug-target.html |access-date=2024-03-07 |website=www.stjude.org |language=en}}</ref><ref name=":11">{{Cite journal |date=2024-01 |title=Therapeutic potential of PANoptosis: innate sensors, inflammasomes, and RIPKs in PANoptosomes |url=https://pubmed.ncbi.nlm.nih.gov/37977994/ |journal=Trends in Molecular Medicine |volume=30 |issue=1 |pages=74–88 |doi=10.1016/j.molmed.2023.10.001 |issn=1471-499X |pmid=37977994}}</ref> The assembly of the PANoptosome cell death complex occurs in response to germline-encoded [[Pattern recognition receptor|pattern-recognition receptors (PRRs)]] sensing pathogens, including bacterial, viral, and fungal infections, as well as [[Pathogen-associated molecular pattern|pathogen-associated molecular patterns]], [[Damage-associated molecular pattern|damage-associated molecular patterns]], and [[Cytokine|cytokines]] that are released during infections, inflammatory conditions, and [[cancer]].<ref name=":0">{{Cite web |title=Promising preclinical cancer therapy harnesses a newly discovered cell death pathway |url=https://www.stjude.org/media-resources/news-releases/2021-medicine-science-news/promising-preclinical-cancer-therapy-harnesses-a-newly-discovered-cell-death-pathway.html |access-date=2021-11-16 |website=www.stjude.org |language=en}}</ref><ref name=":7">{{Cite web |title=ZBP1 links interferon treatment and dangerous inflammatory cell death during COVID-19 |url=https://www.stjude.org/media-resources/news-releases/2022-medicine-science-news/zbp1-links-interferon-treatment-and-cell-death-during-covid-19.html |access-date=2022-06-02 |website=www.stjude.org |language=en}}</ref><ref name=":1">{{Cite web |title=The PANoptosome: a new frontier in innate immune responses |url=https://www.stjude.org/media-resources/news-releases/2021-medicine-science-news/the-panoptosome-a-new-frontier-in-innate-immune-responses.html |access-date=2021-11-16 |website=www.stjude.org |language=en}}</ref><ref name=":3">{{Cite web|title=In the lab, St. Jude scientists identify possible COVID-19 treatment|url=https://www.stjude.org/media-resources/news-releases/2020-medicine-science-news/in-the-lab-st-jude-scientists-identify-possible-covid-19-treatment.html|access-date=2021-11-16|website=www.stjude.org|language=en}}</ref><ref name=":2">{{Cite web |title=Discovering the secrets of the enigmatic caspase-6 |url=https://www.stjude.org/media-resources/news-releases/2020-medicine-science-news/discovering-the-secrets-of-the-enigmatic-caspase-6.html |access-date=2021-11-16 |website=www.stjude.org |language=en}}</ref><ref>{{Cite web|title=Breaking the dogma: Key cell death regulator has more than one way to get the job done|url=https://www.stjude.org/media-resources/news-releases/2019-medicine-science-news/key-cell-death-regulator-gets-job-done.html|access-date=2021-11-16|website=www.stjude.org|language=en}}</ref><ref name=":5">{{Cite journal|last1=Kuriakose|first1=Teneema|last2=Man|first2=Si Ming|last3=Malireddi|first3=R.K. Subbarao|last4=Karki|first4=Rajendra|last5=Kesavardhana|first5=Sannula|last6=Place|first6=David E.|last7=Neale|first7=Geoffrey|last8=Vogel|first8=Peter|last9=Kanneganti|first9=Thirumala-Devi|date=2016-08-05|title=ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways|journal=Science Immunology|volume=1|issue=2|pages=aag2045|doi=10.1126/sciimmunol.aag2045|issn=2470-9468|pmc=5131924|pmid=27917412}}</ref><ref>{{Cite journal|last1=Karki|first1=Rajendra|last2=Sharma|first2=Bhesh Raj|last3=Lee|first3=Ein|last4=Banoth|first4=Balaji|last5=Malireddi|first5=R.K. Subbarao|last6=Samir|first6=Parimal|last7=Tuladhar|first7=Shraddha|last8=Mummareddy|first8=Harisankeerth|last9=Burton|first9=Amanda R.|last10=Vogel|first10=Peter|last11=Kanneganti|first11=Thirumala-Devi|date=2020-06-18|title=Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer|journal=JCI Insight|volume=5|issue=12|doi=10.1172/jci.insight.136720|issn=2379-3708|pmc=7406299|pmid=32554929|doi-access=free}}</ref><ref name=":20">{{Cite web|title=Diet affects mix of intestinal bacteria and the risk of inflammatory bone disease|url=https://www.stjude.org/media-resources/news-releases/2014-medicine-science-news/diet-affects-mix-of-intestinal-bacteria-and-the-risk-of-inflammatory-bone-disease.html|access-date=2020-09-11|website=www.stjude.org|language=en}}</ref><ref name=":4">{{Cite journal|last1=Malireddi|first1=R. K. Subbarao|last2=Karki|first2=Rajendra|last3=Sundaram|first3=Balamurugan|last4=Kancharana|first4=Balabhaskararao|last5=Lee|first5=SangJoon|last6=Samir|first6=Parimal|last7=Kanneganti|first7=Thirumala-Devi|date=2021-07-21|title=Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth|journal=ImmunoHorizons|volume=5|issue=7|pages=568–580|doi=10.4049/immunohorizons.2100059|issn=2573-7732|pmc=8522052|pmid=34290111}}</ref><ref name=":6">{{Cite journal|last1=Karki|first1=Rajendra|last2=Sharma|first2=Bhesh Raj|last3=Tuladhar|first3=Shraddha|last4=Williams|first4=Evan Peter|last5=Zalduondo|first5=Lillian|last6=Samir|first6=Parimal|last7=Zheng|first7=Min|last8=Sundaram|first8=Balamurugan|last9=Banoth|first9=Balaji|last10=Malireddi|first10=R. K. Subbarao|last11=Schreiner|first11=Patrick|date=2021-01-07|title=Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes|journal=Cell|volume=184|issue=1|pages=149–168.e17|doi=10.1016/j.cell.2020.11.025|issn=1097-4172|pmc=7674074|pmid=33278357}}</ref><ref name=":8">{{Cite journal |last1=Karki |first1=Rajendra |last2=Lee |first2=SangJoon |last3=Mall |first3=Raghvendra |last4=Pandian |first4=Nagakannan |last5=Wang |first5=Yaqiu |last6=Sharma |first6=Bhesh Raj |last7=Malireddi |first7=Rk Subbarao |last8=Yang |first8=Dong |last9=Trifkovic |first9=Sanja |last10=Steele |first10=Jacob A. |last11=Connelly |first11=Jon P. |date=2022-05-19 |title=ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection |journal=Science Immunology |volume=7 |issue=74 |pages=eabo6294 |doi=10.1126/sciimmunol.abo6294 |issn=2470-9468 |pmid=35587515|pmc=9161373 }}</ref><ref>{{Cite journal |last1=Wang |first1=Yaqiu |last2=Pandian |first2=Nagakannan |last3=Han |first3=Joo-Hui |last4=Sundaram |first4=Balamurugan |last5=Lee |first5=SangJoon |last6=Karki |first6=Rajendra |last7=Guy |first7=Clifford S. |last8=Kanneganti |first8=Thirumala-Devi |date=2022-09-28 |title=Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method |journal=Cellular and Molecular Life Sciences |volume=79 |issue=10 |pages=531 |doi=10.1007/s00018-022-04564-z |issn=1420-9071 |pmc=9545391 |pmid=36169732}}</ref><ref name=":9">{{Cite journal |last1=Sundaram |first1=Balamurugan |last2=Pandian |first2=Nagakannan |last3=Mall |first3=Raghvendra |last4=Wang |first4=Yaqiu |last5=Sarkar |first5=Roman |last6=Kim |first6=Hee Jin |last7=Malireddi |first7=R.K. Subbarao |last8=Karki |first8=Rajendra |last9=Janke |first9=Laura J. |last10=Vogel |first10=Peter |last11=Kanneganti |first11=Thirumala-Devi |date=June 2023 |title=NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs |journal=Cell |volume=186 |issue=13 |pages=2783–2801.e20 |language=en |doi=10.1016/j.cell.2023.05.005|pmid=37267949 |pmc=10330523 |doi-access=free |pmc-embargo-date=June 22, 2024 }}</ref><ref name=":10" /> Several PANoptosome complexes, such as the [[ZBP1]]-, [[AIM2]]-, [[RIPK1]]-, and [[NLRP12]]-PANoptosomes, have been characterized so far.<ref name=":10" /><ref name=":12">{{Cite journal |last=Zheng |first=Min |last2=Karki |first2=Rajendra |last3=Vogel |first3=Peter |last4=Kanneganti |first4=Thirumala-Devi |date=2020-04-30 |title=Caspase-6 Is a Key Regulator of Innate Immunity, Inflammasome Activation, and Host Defense |url=https://pubmed.ncbi.nlm.nih.gov/32298652/ |journal=Cell |volume=181 |issue=3 |pages=674–687.e13 |doi=10.1016/j.cell.2020.03.040 |issn=1097-4172 |pmc=7425208 |pmid=32298652}}</ref><ref>{{Cite journal |last=Christgen |first=Shelbi |last2=Zheng |first2=Min |last3=Kesavardhana |first3=Sannula |last4=Karki |first4=Rajendra |last5=Malireddi |first5=R. K. Subbarao |last6=Banoth |first6=Balaji |last7=Place |first7=David E. |last8=Briard |first8=Benoit |last9=Sharma |first9=Bhesh Raj |last10=Tuladhar |first10=Shraddha |last11=Samir |first11=Parimal |last12=Burton |first12=Amanda |last13=Kanneganti |first13=Thirumala-Devi |date=2020 |title=Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis) |url=https://pubmed.ncbi.nlm.nih.gov/32547960/ |journal=Frontiers in Cellular and Infection Microbiology |volume=10 |pages=237 |doi=10.3389/fcimb.2020.00237 |issn=2235-2988 |pmc=7274033 |pmid=32547960}}</ref><ref name=":13">{{Cite journal |last=Lee |first=SangJoon |last2=Karki |first2=Rajendra |last3=Wang |first3=Yaqiu |last4=Nguyen |first4=Lam Nhat |last5=Kalathur |first5=Ravi C. |last6=Kanneganti |first6=Thirumala-Devi |date=2021-09 |title=AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence |url=https://pubmed.ncbi.nlm.nih.gov/34471287/ |journal=Nature |volume=597 |issue=7876 |pages=415–419 |doi=10.1038/s41586-021-03875-8 |issn=1476-4687 |pmc=8603942 |pmid=34471287}}</ref><ref>{{Cite journal |last=Malireddi |first=R. K. Subbarao |last2=Kesavardhana |first2=Sannula |last3=Karki |first3=Rajendra |last4=Kancharana |first4=Balabhaskararao |last5=Burton |first5=Amanda R. |last6=Kanneganti |first6=Thirumala-Devi |date=2020-12-11 |title=RIPK1 Distinctly Regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis |url=https://pubmed.ncbi.nlm.nih.gov/33310881/ |journal=ImmunoHorizons |volume=4 |issue=12 |pages=789–796 |doi=10.4049/immunohorizons.2000097 |issn=2573-7732 |pmc=7906112 |pmid=33310881}}</ref><ref name=":14">{{Cite journal |last=Sundaram |first=Balamurugan |last2=Pandian |first2=Nagakannan |last3=Mall |first3=Raghvendra |last4=Wang |first4=Yaqiu |last5=Sarkar |first5=Roman |last6=Kim |first6=Hee Jin |last7=Malireddi |first7=R. K. Subbarao |last8=Karki |first8=Rajendra |last9=Janke |first9=Laura J. |last10=Vogel |first10=Peter |last11=Kanneganti |first11=Thirumala-Devi |date=2023-06-22 |title=NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs |url=https://pubmed.ncbi.nlm.nih.gov/37267949/ |journal=Cell |volume=186 |issue=13 |pages=2783–2801.e20 |doi=10.1016/j.cell.2023.05.005 |issn=1097-4172 |pmid=37267949}}</ref>


Emerging genetic, molecular, and biochemical studies have identified extensive crosstalk among the molecular components across various cell death pathways in response to a variety of [[Pathogen|pathogens]] and innate immune triggers.<ref name=":0" /><ref name=":7" /> Historically, inflammatory [[caspase]]-mediated [[pyroptosis]]  and RIPK-driven [[necroptosis]] were described as two major inflammatory cell death pathways. While the PANoptosis pathway has some molecular components in common with [[pyroptosis]] and [[necroptosis]], as well as with the non-lytic [[apoptosis]] pathway, these mechanisms are separate processes that are associated with distinct triggers, protein complexes, and execution pathways.<ref name=":11" /> [[Inflammasome]]-dependent pyroptosis involves inflammatory caspases, including [[Caspase 1|caspase-1]] and [[Caspase 11|caspase-11]] in mice, and caspases-1, [[Caspase 4|'''-'''4]], and '''-'''[[Caspase 5|5]] in humans, and is executed by [[GSDMD|gasdermin D]].<ref>{{Cite journal |last=Man |first=Si Ming |last2=Kanneganti |first2=Thirumala-Devi |date=2015-05 |title=Regulation of inflammasome activation |url=https://pubmed.ncbi.nlm.nih.gov/25879280/ |journal=Immunological Reviews |volume=265 |issue=1 |pages=6–21 |doi=10.1111/imr.12296 |issn=1600-065X |pmc=4400844 |pmid=25879280}}</ref><ref>{{Cite journal |last=Shi |first=Jianjin |last2=Zhao |first2=Yue |last3=Wang |first3=Kun |last4=Shi |first4=Xuyan |last5=Wang |first5=Yue |last6=Huang |first6=Huanwei |last7=Zhuang |first7=Yinghua |last8=Cai |first8=Tao |last9=Wang |first9=Fengchao |last10=Shao |first10=Feng |date=2015-10-29 |title=Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death |url=https://pubmed.ncbi.nlm.nih.gov/26375003/ |journal=Nature |volume=526 |issue=7575 |pages=660–665 |doi=10.1038/nature15514 |issn=1476-4687 |pmid=26375003}}</ref><ref>{{Cite journal |last=He |first=Wan-ting |last2=Wan |first2=Haoqiang |last3=Hu |first3=Lichen |last4=Chen |first4=Pengda |last5=Wang |first5=Xin |last6=Huang |first6=Zhe |last7=Yang |first7=Zhang-Hua |last8=Zhong |first8=Chuan-Qi |last9=Han |first9=Jiahuai |date=2015-12 |title=Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion |url=https://pubmed.ncbi.nlm.nih.gov/26611636/ |journal=Cell Research |volume=25 |issue=12 |pages=1285–1298 |doi=10.1038/cr.2015.139 |issn=1748-7838 |pmc=4670995 |pmid=26611636}}</ref><ref>{{Cite journal |last=Aglietti |first=Robin A. |last2=Estevez |first2=Alberto |last3=Gupta |first3=Aaron |last4=Ramirez |first4=Monica Gonzalez |last5=Liu |first5=Peter S. |last6=Kayagaki |first6=Nobuhiko |last7=Ciferri |first7=Claudio |last8=Dixit |first8=Vishva M. |last9=Dueber |first9=Erin C. |date=2016-07-12 |title=GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes |url=https://pubmed.ncbi.nlm.nih.gov/27339137/ |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=113 |issue=28 |pages=7858–7863 |doi=10.1073/pnas.1607769113 |issn=1091-6490 |pmc=4948338 |pmid=27339137}}</ref><ref>{{Cite journal |last=Sborgi |first=Lorenzo |last2=Rühl |first2=Sebastian |last3=Mulvihill |first3=Estefania |last4=Pipercevic |first4=Joka |last5=Heilig |first5=Rosalie |last6=Stahlberg |first6=Henning |last7=Farady |first7=Christopher J. |last8=Müller |first8=Daniel J. |last9=Broz |first9=Petr |last10=Hiller |first10=Sebastian |date=2016-08-15 |title=GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death |url=https://pubmed.ncbi.nlm.nih.gov/27418190/ |journal=The EMBO journal |volume=35 |issue=16 |pages=1766–1778 |doi=10.15252/embj.201694696 |issn=1460-2075 |pmc=5010048 |pmid=27418190}}</ref><ref>{{Cite journal |last=Kayagaki |first=Nobuhiko |last2=Warming |first2=Søren |last3=Lamkanfi |first3=Mohamed |last4=Vande Walle |first4=Lieselotte |last5=Louie |first5=Salina |last6=Dong |first6=Jennifer |last7=Newton |first7=Kim |last8=Qu |first8=Yan |last9=Liu |first9=Jinfeng |last10=Heldens |first10=Sherry |last11=Zhang |first11=Juan |last12=Lee |first12=Wyne P. |last13=Roose-Girma |first13=Merone |last14=Dixit |first14=Vishva M. |date=2011-10-16 |title=Non-canonical inflammasome activation targets caspase-11 |url=https://pubmed.ncbi.nlm.nih.gov/22002608/ |journal=Nature |volume=479 |issue=7371 |pages=117–121 |doi=10.1038/nature10558 |issn=1476-4687 |pmid=22002608}}</ref><ref>{{Cite journal |last=Martinon |first=Fabio |last2=Burns |first2=Kimberly |last3=Tschopp |first3=Jürg |date=2002-08 |title=The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta |url=https://pubmed.ncbi.nlm.nih.gov/12191486/ |journal=Molecular Cell |volume=10 |issue=2 |pages=417–426 |doi=10.1016/s1097-2765(02)00599-3 |issn=1097-2765 |pmid=12191486}}</ref> In contrast, necroptosis occurs via RIPK1/3-mediated MLKL activation, which is downstream of [[Caspase 8|caspase-8]] inhibition.<ref>{{Cite journal |last=Zhao |first=Jie |last2=Jitkaew |first2=Siriporn |last3=Cai |first3=Zhenyu |last4=Choksi |first4=Swati |last5=Li |first5=Qiuning |last6=Luo |first6=Ji |last7=Liu |first7=Zheng-Gang |date=2012-04-03 |title=Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis |url=https://pubmed.ncbi.nlm.nih.gov/22421439/ |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=109 |issue=14 |pages=5322–5327 |doi=10.1073/pnas.1200012109 |issn=1091-6490 |pmc=3325682 |pmid=22421439}}</ref><ref>{{Cite journal |last=Sun |first=Liming |last2=Wang |first2=Huayi |last3=Wang |first3=Zhigao |last4=He |first4=Sudan |last5=Chen |first5=She |last6=Liao |first6=Daohong |last7=Wang |first7=Lai |last8=Yan |first8=Jiacong |last9=Liu |first9=Weilong |last10=Lei |first10=Xiaoguang |last11=Wang |first11=Xiaodong |date=2012-01-20 |title=Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase |url=https://pubmed.ncbi.nlm.nih.gov/22265413/ |journal=Cell |volume=148 |issue=1-2 |pages=213–227 |doi=10.1016/j.cell.2011.11.031 |issn=1097-4172 |pmid=22265413}}</ref><ref>{{Cite journal |last=Galluzzi |first=Lorenzo |last2=Kepp |first2=Oliver |last3=Chan |first3=Francis Ka-Ming |last4=Kroemer |first4=Guido |date=2017-01-24 |title=Necroptosis: Mechanisms and Relevance to Disease |url=https://pubmed.ncbi.nlm.nih.gov/27959630/ |journal=Annual Review of Pathology |volume=12 |pages=103–130 |doi=10.1146/annurev-pathol-052016-100247 |issn=1553-4014 |pmc=5786374 |pmid=27959630}}</ref><ref>{{Cite journal |last=Dhuriya |first=Yogesh K. |last2=Sharma |first2=Divakar |date=2018-07-06 |title=Necroptosis: a regulated inflammatory mode of cell death |url=https://pubmed.ncbi.nlm.nih.gov/29980212/ |journal=Journal of Neuroinflammation |volume=15 |issue=1 |pages=199 |doi=10.1186/s12974-018-1235-0 |issn=1742-2094 |pmc=6035417 |pmid=29980212}}</ref> On the other hand, PANoptosis is [TDK1] driven by caspases and RIPKs and is executed by gasdermins, MLKL, and potentially other yet to be identified molecules cleaved by caspases.<ref>{{Cite journal |last=Lukens |first=John R. |last2=Gurung |first2=Prajwal |last3=Vogel |first3=Peter |last4=Johnson |first4=Gordon R. |last5=Carter |first5=Robert A. |last6=McGoldrick |first6=Daniel J. |last7=Bandi |first7=Srinivasa Rao |last8=Calabrese |first8=Christopher R. |last9=Vande Walle |first9=Lieselotte |last10=Lamkanfi |first10=Mohamed |last11=Kanneganti |first11=Thirumala-Devi |date=2014-12-11 |title=Dietary modulation of the microbiome affects autoinflammatory disease |url=https://pubmed.ncbi.nlm.nih.gov/25274309/ |journal=Nature |volume=516 |issue=7530 |pages=246–249 |doi=10.1038/nature13788 |issn=1476-4687 |pmc=4268032 |pmid=25274309}}</ref><ref>{{Cite journal |last=Gurung |first=Prajwal |last2=Burton |first2=Amanda |last3=Kanneganti |first3=Thirumala-Devi |date=2016-04-19 |title=NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis |url=https://pubmed.ncbi.nlm.nih.gov/27071119/ |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=113 |issue=16 |pages=4452–4457 |doi=10.1073/pnas.1601636113 |issn=1091-6490 |pmc=4843439 |pmid=27071119}}</ref><ref>{{Cite journal |last=Kuriakose |first=Teneema |last2=Man |first2=Si Ming |last3=Malireddi |first3=R. K. Subbarao |last4=Karki |first4=Rajendra |last5=Kesavardhana |first5=Sannula |last6=Place |first6=David E. |last7=Neale |first7=Geoffrey |last8=Vogel |first8=Peter |last9=Kanneganti |first9=Thirumala-Devi |date=2016-08-05 |title=ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways |url=https://pubmed.ncbi.nlm.nih.gov/27917412/ |journal=Science Immunology |volume=1 |issue=2 |pages=aag2045 |doi=10.1126/sciimmunol.aag2045 |issn=2470-9468 |pmc=5131924 |pmid=27917412}}</ref><ref>{{Cite journal |last=Christgen |first=Shelbi |last2=Zheng |first2=Min |last3=Kesavardhana |first3=Sannula |last4=Karki |first4=Rajendra |last5=Malireddi |first5=R. K. Subbarao |last6=Banoth |first6=Balaji |last7=Place |first7=David E. |last8=Briard |first8=Benoit |last9=Sharma |first9=Bhesh Raj |last10=Tuladhar |first10=Shraddha |last11=Samir |first11=Parimal |last12=Burton |first12=Amanda |last13=Kanneganti |first13=Thirumala-Devi |date=2020 |title=Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis) |url=https://pubmed.ncbi.nlm.nih.gov/32547960/ |journal=Frontiers in Cellular and Infection Microbiology |volume=10 |pages=237 |doi=10.3389/fcimb.2020.00237 |issn=2235-2988 |pmc=7274033 |pmid=32547960}}</ref><ref>{{Cite journal |last=Malireddi |first=R. K. Subbarao |last2=Kesavardhana |first2=Sannula |last3=Karki |first3=Rajendra |last4=Kancharana |first4=Balabhaskararao |last5=Burton |first5=Amanda R. |last6=Kanneganti |first6=Thirumala-Devi |date=2020-12-11 |title=RIPK1 Distinctly Regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis |url=https://pubmed.ncbi.nlm.nih.gov/33310881/ |journal=ImmunoHorizons |volume=4 |issue=12 |pages=789–796 |doi=10.4049/immunohorizons.2000097 |issn=2573-7732 |pmc=7906112 |pmid=33310881}}</ref><ref>{{Cite journal |last=Chen |first=Wen |last2=Gullett |first2=Jessica M. |last3=Tweedell |first3=Rebecca E. |last4=Kanneganti |first4=Thirumala-Devi |date=2023-11 |title=Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease |url=https://pubmed.ncbi.nlm.nih.gov/36782083/ |journal=European Journal of Immunology |volume=53 |issue=11 |pages=e2250235 |doi=10.1002/eji.202250235 |issn=1521-4141 |pmid=36782083}}</ref><ref name=":13" /><ref name=":14" /> Moreover, caspase-8 is essential for cell death in PANoptosis<ref>{{Cite journal |last=Malireddi |first=R. K. Subbarao |last2=Bynigeri |first2=Ratnakar R. |last3=Mall |first3=Raghvendra |last4=Connelly |first4=Jon P. |last5=Pruett-Miller |first5=Shondra M. |last6=Kanneganti |first6=Thirumala-Devi |date=2023-10-20 |title=Inflammatory cell death, PANoptosis, screen identifies host factors in coronavirus innate immune response as therapeutic targets |url=https://pubmed.ncbi.nlm.nih.gov/37864059/ |journal=Communications Biology |volume=6 |issue=1 |pages=1071 |doi=10.1038/s42003-023-05414-9 |issn=2399-3642 |pmid=37864059}}</ref><ref>{{Cite journal |last=Jiang |first=Mingxia |last2=Qi |first2=Ling |last3=Li |first3=Lisha |last4=Wu |first4=Yiming |last5=Song |first5=Dongfeng |last6=Li |first6=Yanjing |date=2021-10-01 |title=Caspase-8: A key protein of cross-talk signal way in "PANoptosis" in cancer |url=https://pubmed.ncbi.nlm.nih.gov/34028029/ |journal=International Journal of Cancer |volume=149 |issue=7 |pages=1408–1420 |doi=10.1002/ijc.33698 |issn=1097-0215 |pmid=34028029}}</ref><ref>{{Cite journal |last=Jiang |first=Mingxia |last2=Qi |first2=Ling |last3=Li |first3=Lisha |last4=Wu |first4=Yiming |last5=Song |first5=Dongfeng |last6=Li |first6=Yanjing |date=2021-10-01 |title=Caspase-8: A key protein of cross-talk signal way in "PANoptosis" in cancer |url=https://pubmed.ncbi.nlm.nih.gov/34028029/ |journal=International Journal of Cancer |volume=149 |issue=7 |pages=1408–1420 |doi=10.1002/ijc.33698 |issn=1097-0215 |pmid=34028029}}</ref> but needs to be inactivated or inhibited to induce necroptosis.<ref>{{Cite journal |last=Someda |first=Masataka |last2=Kuroki |first2=Shunsuke |last3=Miyachi |first3=Hitoshi |last4=Tachibana |first4=Makoto |last5=Yonehara |first5=Shin |date=2020-05 |title=Caspase-8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell differentiation and necroptosis |url=https://pubmed.ncbi.nlm.nih.gov/31659279/ |journal=Cell Death and Differentiation |volume=27 |issue=5 |pages=1539–1553 |doi=10.1038/s41418-019-0434-2 |issn=1476-5403 |pmc=7206185 |pmid=31659279}}</ref><ref>{{Cite journal |last=Rodriguez |first=Diego A. |last2=Quarato |first2=Giovanni |last3=Liedmann |first3=Swantje |last4=Tummers |first4=Bart |last5=Zhang |first5=Ting |last6=Guy |first6=Cliff |last7=Crawford |first7=Jeremy Chase |last8=Palacios |first8=Gustavo |last9=Pelletier |first9=Stephane |last10=Kalkavan |first10=Halime |last11=Shaw |first11=Jeremy J. P. |last12=Fitzgerald |first12=Patrick |last13=Chen |first13=Mark J. |last14=Balachandran |first14=Siddharth |last15=Green |first15=Douglas R. |date=2022-10-11 |title=Caspase-8 and FADD prevent spontaneous ZBP1 expression and necroptosis |url=https://pubmed.ncbi.nlm.nih.gov/36191211 |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=119 |issue=41 |pages=e2207240119 |doi=10.1073/pnas.2207240119 |issn=1091-6490 |pmc=9565532 |pmid=36191211}}</ref>
Inflammatory cell death is associated with activation of the immune system through the release of [[cytokine]]s and [[damage-associated molecular pattern]]s. Live pathogens that carry multiple [[pathogen-associated molecular pattern]]s and homeostasis-altering triggers can modulate cell death pathways. [[Pyroptosis]] (inflammatory caspase-mediated cell death that drives maturation of the cytokines [[Interleukin 1 beta|IL-1β]] and IL-18) and [[necroptosis]] (RIPK1/RIPK3/MLKL-driven cell death) were historically described as two major inflammatory cell death pathways, with recent studies describing PANoptosis as an additional inflammatory cell death pathway.


Activation of PANoptosis can clear infected cells for host defense, and it has shown preclinical promise as an anti-cancer strategy. For example, PANoptosis is important for host defense during [[influenza]] infection through the ZBP1-PANoptosome and during ''[[Francisella]]'' and [[Herpes simplex virus|herpes simplex virus 1]] infections through the AIM2-PANoptosome.<ref name=":1" /><ref name=":2" /><ref>{{Cite journal|last1=Zheng|first1=Min|last2=Karki|first2=Rajendra|last3=Vogel|first3=Peter|last4=Kanneganti|first4=Thirumala-Devi|date=April 2020|title=Caspase-6 Is a Key Regulator of Innate Immunity, Inflammasome Activation, and Host Defense|url=http://dx.doi.org/10.1016/j.cell.2020.03.040|journal=Cell|volume=181|issue=3|pages=674–687.e13|doi=10.1016/j.cell.2020.03.040 |pmid=32298652 |pmc=7425208|issn=0092-8674}}</ref><ref>{{Cite journal|last1=Lee|first1=SangJoon|last2=Karki|first2=Rajendra|last3=Wang|first3=Yaqiu|last4=Nguyen|first4=Lam Nhat|last5=Kalathur|first5=Ravi C.|last6=Kanneganti|first6=Thirumala-Devi|date=2021-09-01|title=AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence|url=http://dx.doi.org/10.1038/s41586-021-03875-8|journal=Nature|volume=597|issue=7876|pages=415–419|doi=10.1038/s41586-021-03875-8|pmid=34471287 |pmc=8603942 |bibcode=2021Natur.597..415L |issn=0028-0836}}</ref> Additionally, treatment of cancer cells with the PANoptosis-inducing agents TNF and IFN-γ<ref name=":3" /><ref name=":6" /> can reduce tumor size in preclinical models.<ref name=":4" /> The combination of the nuclear export inhibitor [[selinexor]] and [[Interferon|IFN]] can also cause PANoptosis and regress tumors in preclinical models.<ref name=":0" /><ref>{{Cite journal|last1=Karki|first1=Rajendra|last2=Sundaram|first2=Balamurugan|last3=Sharma|first3=Bhesh Raj|last4=Lee|first4=SangJoon|last5=Malireddi|first5=R. K. Subbarao|last6=Nguyen|first6=Lam Nhat|last7=Christgen|first7=Shelbi|last8=Zheng|first8=Min|last9=Wang|first9=Yaqiu|last10=Samir|first10=Parimal|last11=Neale|first11=Geoffrey|date=2021-10-19|title=ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis|journal=Cell Reports|volume=37|issue=3|pages=109858|doi=10.1016/j.celrep.2021.109858|issn=2211-1247|pmid=34686350|pmc=8853634 }}</ref> However, excess activation of PANoptosis can be associated with inflammation, inflammatory disease, and [[cytokine storm]] syndromes.<ref name=":3" /><ref name=":20" /><ref>{{Cite journal|last1=Karki|first1=Rajendra|last2=Kanneganti|first2=Thirumala-Devi|date=August 2021|title=The 'cytokine storm': molecular mechanisms and therapeutic prospects|journal=Trends in Immunology|volume=42|issue=8|pages=681–705|doi=10.1016/j.it.2021.06.001|issn=1471-4981|pmid=34217595|pmc=9310545 }}</ref><ref name=":9" /><ref name=":10" /> Treatments that block TNF and IFN-γ to prevent PANoptosis have provided therapeutic benefit in preclinical models of cytokine storm syndromes, including cytokine shock, [[Severe acute respiratory syndrome coronavirus 2|SARS-CoV-2]] infection, [[sepsis]], and [[hemophagocytic lymphohistiocytosis]],<ref name=":6" /> suggesting the therapeutic potential of modulating this pathway.<ref name=":3" /> Further studies with beta-coronaviruses have shown that IFN can induce [[ZBP1]]-mediated PANoptosis during SARS-CoV-2 infection, thereby limiting the efficacy of IFN treatment during infection and resulting in morbidity and mortality. This suggests that inhibiting ZBP1 may improve the therapeutic efficacy of IFN therapy during SARS-CoV-2 infection and possibly other inflammatory conditions where IFN-mediated cell death and pathology occur.<ref name=":7" /><ref name=":8" /> More recent evidence suggests that [[NLRP12]]-mediated PANoptosis is activated by [[heme]], which can be released by red blood cell lysis during infection or inflammatory disease, in combination with specific components of infection or cellular damage.<ref name=":9" /><ref name=":10" /> Deletion of NLRP12 protects against pathology in animal models of hemolytic disease, suggesting this could also act as a therapeutic target.<ref name=":9" /><ref name=":10" />
PANoptosis has now been identified in a variety of infections, including viral ([[influenza A virus]], [[Herpes simplex virus|herpes simplex virus 1 (HSV1)]], [[coronavirus]]), bacterial ([[Yersinia pseudotuberculosis|''Yersinia pseudotuberculosis'']], [[Francisella novicida|''Francisella novicida'']]), and fungal ([[Candida albicans|''Candida albicans'']], [[Aspergillus fumigatus|''Aspergillus fumigatus'']]). PANoptosis has also been implicated in inflammatory diseases, neurological diseases, and cancer.<ref>{{Cite journal |last=Cai |first=Hantao |last2=Lv |first2=Mingming |last3=Wang |first3=Tingting |date=2023-12 |title=PANoptosis in cancer, the triangle of cell death |url=https://pubmed.ncbi.nlm.nih.gov/38069556/ |journal=Cancer Medicine |volume=12 |issue=24 |pages=22206–22223 |doi=10.1002/cam4.6803 |issn=2045-7634 |pmid=38069556}}</ref><ref>{{Cite journal |last=Malireddi |first=R. K. Subbarao |last2=Karki |first2=Rajendra |last3=Sundaram |first3=Balamurugan |last4=Kancharana |first4=Balabhaskararao |last5=Lee |first5=SangJoon |last6=Samir |first6=Parimal |last7=Kanneganti |first7=Thirumala-Devi |date=2021-07-21 |title=Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth |url=https://pubmed.ncbi.nlm.nih.gov/34290111/ |journal=ImmunoHorizons |volume=5 |issue=7 |pages=568–580 |doi=10.4049/immunohorizons.2100059 |issn=2573-7732 |pmc=8522052 |pmid=34290111}}</ref><ref>{{Cite journal |last=Karki |first=Rajendra |last2=Sharma |first2=Bhesh Raj |last3=Lee |first3=Ein |last4=Banoth |first4=Balaji |last5=Malireddi |first5=R. K. Subbarao |last6=Samir |first6=Parimal |last7=Tuladhar |first7=Shraddha |last8=Mummareddy |first8=Harisankeerth |last9=Burton |first9=Amanda R. |last10=Vogel |first10=Peter |last11=Kanneganti |first11=Thirumala-Devi |date=2020-06-18 |title=Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer |url=https://pubmed.ncbi.nlm.nih.gov/32554929/ |journal=JCI insight |volume=5 |issue=12 |pages=e136720, 136720 |doi=10.1172/jci.insight.136720 |issn=2379-3708 |pmc=7406299 |pmid=32554929}}</ref><ref>{{Cite journal |last=Sharma |first=Bhesh Raj |last2=Kanneganti |first2=Thirumala-Devi |date=2023-02 |title=Inflammasome signaling in colorectal cancer |url=https://pubmed.ncbi.nlm.nih.gov/36150688/ |journal=Translational Research: The Journal of Laboratory and Clinical Medicine |volume=252 |pages=45–52 |doi=10.1016/j.trsl.2022.09.002 |issn=1878-1810 |pmc=9839553 |pmid=36150688}}</ref><ref>{{Cite journal |last=Mall |first=Raghvendra |last2=Bynigeri |first2=Ratnakar R. |last3=Karki |first3=Rajendra |last4=Malireddi |first4=R. K. Subbarao |last5=Sharma |first5=Bhesh Raj |last6=Kanneganti |first6=Thirumala-Devi |date=2022-12 |title=Pancancer transcriptomic profiling identifies key PANoptosis markers as therapeutic targets for oncology |url=https://pubmed.ncbi.nlm.nih.gov/36329783/ |journal=NAR cancer |volume=4 |issue=4 |pages=zcac033 |doi=10.1093/narcan/zcac033 |issn=2632-8674 |pmc=9623737 |pmid=36329783}}</ref><ref>{{Cite journal |last=Pan |first=Hongda |last2=Pan |first2=Jingxin |last3=Li |first3=Pei |last4=Gao |first4=Jianpeng |date=2022-05 |title=Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer |url=https://pubmed.ncbi.nlm.nih.gov/35470064/ |journal=Clinical Immunology (Orlando, Fla.) |volume=238 |pages=109019 |doi=10.1016/j.clim.2022.109019 |issn=1521-7035 |pmid=35470064}}</ref><ref>{{Cite journal |last=He |first=Puxing |last2=Ma |first2=Yixuan |last3=Wu |first3=Yaolu |last4=Zhou |first4=Qing |last5=Du |first5=Huan |date=2023 |title=Exploring PANoptosis in breast cancer based on scRNA-seq and bulk-seq |url=https://pubmed.ncbi.nlm.nih.gov/37455906/ |journal=Frontiers in Endocrinology |volume=14 |pages=1164930 |doi=10.3389/fendo.2023.1164930 |issn=1664-2392 |pmid=37455906}}</ref><ref>{{Cite journal |last=Sun |first=Yanyan |last2=Zhu |first2=Changlian |date=2023-02 |title=Potential role of PANoptosis in neuronal cell death: commentary on "PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons" |url=https://pubmed.ncbi.nlm.nih.gov/35900425/ |journal=Neural Regeneration Research |volume=18 |issue=2 |pages=339–340 |doi=10.4103/1673-5374.346483 |issn=1673-5374 |pmc=9396522 |pmid=35900425}}</ref><ref>{{Cite journal |last=Qi |first=Zehong |last2=Zhu |first2=Lili |last3=Wang |first3=Kangkai |last4=Wang |first4=Nian |date=2023-11-15 |title=PANoptosis: Emerging mechanisms and disease implications |url=https://pubmed.ncbi.nlm.nih.gov/37806654/ |journal=Life Sciences |volume=333 |pages=122158 |doi=10.1016/j.lfs.2023.122158 |issn=1879-0631 |pmid=37806654}}</ref><ref>{{Cite journal |last=Zhu |first=Peng |last2=Ke |first2=Zhuo-Ran |last3=Chen |first3=Jing-Xian |last4=Li |first4=Shi-Jin |last5=Ma |first5=Tian-Liang |last6=Fan |first6=Xiao-Lei |date=2023 |title=Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment |url=https://pubmed.ncbi.nlm.nih.gov/36845112/ |journal=Frontiers in Immunology |volume=14 |pages=1120034 |doi=10.3389/fimmu.2023.1120034 |issn=1664-3224 |pmc=9948402 |pmid=36845112}}</ref> Activation of PANoptosis can clear infected cells for host defense, and it has shown preclinical promise as an anti-cancer strategy. For example, PANoptosis is important for host defense during influenza infection through the ZBP1-PANoptosome and during ''[[Francisella]]'' and HSV1 infections through the AIM2-PANoptosome.<ref name=":1" /><ref name=":2" /><ref name=":12" /><ref name=":13" /> Additionally, treatment of cancer cells with the PANoptosis-inducing agents TNF and IFN-γ<ref>{{Cite journal |last=Karki |first=Rajendra |last2=Sharma |first2=Bhesh Raj |last3=Tuladhar |first3=Shraddha |last4=Williams |first4=Evan Peter |last5=Zalduondo |first5=Lillian |last6=Samir |first6=Parimal |last7=Zheng |first7=Min |last8=Sundaram |first8=Balamurugan |last9=Banoth |first9=Balaji |last10=Malireddi |first10=R. K. Subbarao |last11=Schreiner |first11=Patrick |last12=Neale |first12=Geoffrey |last13=Vogel |first13=Peter |last14=Webby |first14=Richard |last15=Jonsson |first15=Colleen Beth |date=2021-01-07 |title=Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes |url=https://pubmed.ncbi.nlm.nih.gov/33278357/ |journal=Cell |volume=184 |issue=1 |pages=149–168.e17 |doi=10.1016/j.cell.2020.11.025 |issn=1097-4172 |pmc=7674074 |pmid=33278357}}</ref><ref name=":3" /> can reduce tumor size in preclinical models.<ref>{{Cite journal |last=Subbarao Malireddi |first=R.K. |last2=Karki |first2=Rajendra |last3=Sundaram |first3=Balamurugan |last4=Kancharana |first4=Balabhaskararao |last5=Lee |first5=SangJoon |last6=Samir |first6=Parimal |last7=Kanneganti |first7=Thirumala-Devi |date=2021-07-21 |title=Inflammatory cell death, PANoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522052/ |journal=ImmunoHorizons |volume=5 |issue=7 |pages=568–580 |doi=10.4049/immunohorizons.2100059 |issn=2573-7732 |pmc=8522052 |pmid=34290111}}</ref> The combination of the nuclear export inhibitor [[selinexor]] and [[Interferon|IFN]] can also cause PANoptosis and regress tumors in preclinical models.<ref name=":0" /><ref>{{Cite journal |last=Karki |first=Rajendra |last2=Sundaram |first2=Balamurugan |last3=Sharma |first3=Bhesh Raj |last4=Lee |first4=SangJoon |last5=Malireddi |first5=R.K. Subbarao |last6=Nguyen |first6=Lam Nhat |last7=Christgen |first7=Shelbi |last8=Zheng |first8=Min |last9=Wang |first9=Yaqiu |last10=Samir |first10=Parimal |last11=Neale |first11=Geoffrey |last12=Vogel |first12=Peter |last13=Kanneganti |first13=Thirumala-Devi |date=2021-10-19 |title=ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8853634/ |journal=Cell reports |volume=37 |issue=3 |pages=109858 |doi=10.1016/j.celrep.2021.109858 |issn=2211-1247 |pmc=8853634 |pmid=34686350}}</ref> However, excess activation of PANoptosis can be associated with [[inflammation]], inflammatory disease, and [[cytokine storm]] syndromes.<ref name=":3" /><ref name=":20" /><ref>{{Cite journal |last=Karki |first=Rajendra |last2=Kanneganti |first2=Thirumala-Devi |date=2021-8 |title=The ‘Cytokine Storm’: molecular mechanisms and therapeutic prospects |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310545/ |journal=Trends in immunology |volume=42 |issue=8 |pages=681–705 |doi=10.1016/j.it.2021.06.001 |issn=1471-4906 |pmc=9310545 |pmid=34217595}}</ref><ref name=":14" /><ref name=":10" /> Treatments that block TNF and IFN-γ to prevent PANoptosis have provided therapeutic benefit in preclinical models of cytokine storm syndromes, including cytokine shock, [[Severe acute respiratory syndrome coronavirus 2|SARS-CoV-2]] infection, [[sepsis]], and [[hemophagocytic lymphohistiocytosis]], suggesting the therapeutic potential of modulating this pathway.<ref name=":3" /><ref>{{Cite journal |last=Karki |first=Rajendra |last2=Sharma |first2=Bhesh Raj |last3=Tuladhar |first3=Shraddha |last4=Williams |first4=Evan Peter |last5=Zalduondo |first5=Lillian |last6=Samir |first6=Parimal |last7=Zheng |first7=Min |last8=Sundaram |first8=Balamurugan |last9=Banoth |first9=Balaji |last10=Malireddi |first10=R.K. Subbarao |last11=Schreiner |first11=Patrick |last12=Neale |first12=Geoffrey |last13=Vogel |first13=Peter |last14=Webby |first14=Richard |last15=Jonsson |first15=Colleen Beth |date=2021-01-07 |title=Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes |url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674074/ |journal=Cell |volume=184 |issue=1 |pages=149–168.e17 |doi=10.1016/j.cell.2020.11.025 |issn=0092-8674 |pmc=7674074 |pmid=33278357}}</ref> Further studies with beta-coronaviruses have shown that IFN can induce [[ZBP1]]-mediated PANoptosis during SARS-CoV-2 infection, thereby limiting the efficacy of IFN treatment during infection and resulting in morbidity and mortality. This suggests that inhibiting ZBP1 may improve the therapeutic efficacy of IFN therapy during SARS-CoV-2 infection and possibly other inflammatory conditions where IFN-mediated cell death and pathology occur.<ref>{{Cite journal |last=Oh |first=SuHyeon |last2=Lee |first2=SangJoon |date=2023 |title=Recent advances in ZBP1-derived PANoptosis against viral infections |url=https://pubmed.ncbi.nlm.nih.gov/37261341/ |journal=Frontiers in Immunology |volume=14 |pages=1148727 |doi=10.3389/fimmu.2023.1148727 |issn=1664-3224 |pmid=37261341}}</ref><ref>{{Cite journal |last=Schifanella |first=Luca |last2=Anderson |first2=Jodi |last3=Wieking |first3=Garritt |last4=Southern |first4=Peter J. |last5=Antinori |first5=Spinello |last6=Galli |first6=Massimo |last7=Corbellino |first7=Mario |last8=Lai |first8=Alessia |last9=Klatt |first9=Nichole |last10=Schacker |first10=Timothy W. |last11=Haase |first11=Ashley T. |date=2023-05-29 |title=The Defenders of the Alveolus Succumb in COVID-19 Pneumonia to SARS-CoV-2 and Necroptosis, Pyroptosis, and PANoptosis |url=https://pubmed.ncbi.nlm.nih.gov/36869698/ |journal=The Journal of Infectious Diseases |volume=227 |issue=11 |pages=1245–1254 |doi=10.1093/infdis/jiad056 |issn=1537-6613 |pmid=36869698}}</ref> More recent evidence suggests that [[NLRP12]]-mediated PANoptosis is activated by [[heme]], which can be released by red blood cell lysis during infection or inflammatory disease, in combination with specific components of infection or cellular damage.  Deletion of NLRP12 protects against pathology in animal models of hemolytic disease, suggesting this could also act as a therapeutic target. Additionally, PANoptosis can also be induced by heat stress (HS), such as fever, during infection, and NINJ1 is a known key executioner in this context. Deletion of NINJ1 in a murine model of HS and infection reduces mortality; furthermore, deleting essential PANoptosis effectors upstream completely rescues the mice from mortality, thereby identifying NINJ1 and PANoptosis effectors as potential therapeutic targets.<ref>{{Cite journal |last=Han |first=Joo-Hui |last2=Karki |first2=Rajendra |last3=Malireddi |first3=R. K. Subbarao |last4=Mall |first4=Raghvendra |last5=Sarkar |first5=Roman |last6=Sharma |first6=Bhesh Raj |last7=Klein |first7=Jonathon |last8=Berns |first8=Harmut |last9=Pisharath |first9=Harshan |last10=Pruett-Miller |first10=Shondra M. |last11=Bae |first11=Sung-Jin |last12=Kanneganti |first12=Thirumala-Devi |date=2024-02-26 |title=NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress |url=https://pubmed.ncbi.nlm.nih.gov/38409108/ |journal=Nature Communications |volume=15 |issue=1 |pages=1739 |doi=10.1038/s41467-024-45466-x |issn=2041-1723 |pmid=38409108}}</ref>

The regulation of PANoptosis involves numerous PANoptosomes, which encompass multiple sensor molecules such as [[NLRP3]], ZBP1, AIM2, and NLRP12, along with complex-forming molecules such as caspases and RIPKs. These components activate various downstream cell death executioners and play a role in disease. Therefore, modulating the components of this pathway has potential for therapy.


==References==
==References==

Revision as of 15:07, 8 March 2024

PANoptosis is a unique, innate immune, inflammatory, and lytic cell death pathway driven by caspases and RIPKs and regulated by multiprotein PANoptosome complexes.[1][2] The assembly of the PANoptosome cell death complex occurs in response to germline-encoded pattern-recognition receptors (PRRs) sensing pathogens, including bacterial, viral, and fungal infections, as well as pathogen-associated molecular patterns, damage-associated molecular patterns, and cytokines that are released during infections, inflammatory conditions, and cancer.[3][4][5][6][7][8][9][10][11][12][13][14][15][16][1] Several PANoptosome complexes, such as the ZBP1-, AIM2-, RIPK1-, and NLRP12-PANoptosomes, have been characterized so far.[1][17][18][19][20][21]

Emerging genetic, molecular, and biochemical studies have identified extensive crosstalk among the molecular components across various cell death pathways in response to a variety of pathogens and innate immune triggers.[3][4] Historically, inflammatory caspase-mediated pyroptosis  and RIPK-driven necroptosis were described as two major inflammatory cell death pathways. While the PANoptosis pathway has some molecular components in common with pyroptosis and necroptosis, as well as with the non-lytic apoptosis pathway, these mechanisms are separate processes that are associated with distinct triggers, protein complexes, and execution pathways.[2] Inflammasome-dependent pyroptosis involves inflammatory caspases, including caspase-1 and caspase-11 in mice, and caspases-1, -4, and -5 in humans, and is executed by gasdermin D.[22][23][24][25][26][27][28] In contrast, necroptosis occurs via RIPK1/3-mediated MLKL activation, which is downstream of caspase-8 inhibition.[29][30][31][32] On the other hand, PANoptosis is [TDK1] driven by caspases and RIPKs and is executed by gasdermins, MLKL, and potentially other yet to be identified molecules cleaved by caspases.[33][34][35][36][37][38][19][21] Moreover, caspase-8 is essential for cell death in PANoptosis[39][40][41] but needs to be inactivated or inhibited to induce necroptosis.[42][43]

PANoptosis has now been identified in a variety of infections, including viral (influenza A virus, herpes simplex virus 1 (HSV1), coronavirus), bacterial (Yersinia pseudotuberculosis, Francisella novicida), and fungal (Candida albicans, Aspergillus fumigatus). PANoptosis has also been implicated in inflammatory diseases, neurological diseases, and cancer.[44][45][46][47][48][49][50][51][52][53] Activation of PANoptosis can clear infected cells for host defense, and it has shown preclinical promise as an anti-cancer strategy. For example, PANoptosis is important for host defense during influenza infection through the ZBP1-PANoptosome and during Francisella and HSV1 infections through the AIM2-PANoptosome.[5][7][17][19] Additionally, treatment of cancer cells with the PANoptosis-inducing agents TNF and IFN-γ[54][6] can reduce tumor size in preclinical models.[55] The combination of the nuclear export inhibitor selinexor and IFN can also cause PANoptosis and regress tumors in preclinical models.[3][56] However, excess activation of PANoptosis can be associated with inflammation, inflammatory disease, and cytokine storm syndromes.[6][11][57][21][1] Treatments that block TNF and IFN-γ to prevent PANoptosis have provided therapeutic benefit in preclinical models of cytokine storm syndromes, including cytokine shock, SARS-CoV-2 infection, sepsis, and hemophagocytic lymphohistiocytosis, suggesting the therapeutic potential of modulating this pathway.[6][58] Further studies with beta-coronaviruses have shown that IFN can induce ZBP1-mediated PANoptosis during SARS-CoV-2 infection, thereby limiting the efficacy of IFN treatment during infection and resulting in morbidity and mortality. This suggests that inhibiting ZBP1 may improve the therapeutic efficacy of IFN therapy during SARS-CoV-2 infection and possibly other inflammatory conditions where IFN-mediated cell death and pathology occur.[59][60] More recent evidence suggests that NLRP12-mediated PANoptosis is activated by heme, which can be released by red blood cell lysis during infection or inflammatory disease, in combination with specific components of infection or cellular damage.  Deletion of NLRP12 protects against pathology in animal models of hemolytic disease, suggesting this could also act as a therapeutic target. Additionally, PANoptosis can also be induced by heat stress (HS), such as fever, during infection, and NINJ1 is a known key executioner in this context. Deletion of NINJ1 in a murine model of HS and infection reduces mortality; furthermore, deleting essential PANoptosis effectors upstream completely rescues the mice from mortality, thereby identifying NINJ1 and PANoptosis effectors as potential therapeutic targets.[61]

The regulation of PANoptosis involves numerous PANoptosomes, which encompass multiple sensor molecules such as NLRP3, ZBP1, AIM2, and NLRP12, along with complex-forming molecules such as caspases and RIPKs. These components activate various downstream cell death executioners and play a role in disease. Therefore, modulating the components of this pathway has potential for therapy.

References

  1. ^ a b c d "St. Jude finds NLRP12 as a new drug target for infection, inflammation and hemolytic diseases". www.stjude.org. Retrieved 2024-03-07.
  2. ^ a b "Therapeutic potential of PANoptosis: innate sensors, inflammasomes, and RIPKs in PANoptosomes". Trends in Molecular Medicine. 30 (1): 74–88. 2024-01. doi:10.1016/j.molmed.2023.10.001. ISSN 1471-499X. PMID 37977994. {{cite journal}}: Check date values in: |date= (help)
  3. ^ a b c "Promising preclinical cancer therapy harnesses a newly discovered cell death pathway". www.stjude.org. Retrieved 2021-11-16.
  4. ^ a b "ZBP1 links interferon treatment and dangerous inflammatory cell death during COVID-19". www.stjude.org. Retrieved 2022-06-02.
  5. ^ a b "The PANoptosome: a new frontier in innate immune responses". www.stjude.org. Retrieved 2021-11-16.
  6. ^ a b c d "In the lab, St. Jude scientists identify possible COVID-19 treatment". www.stjude.org. Retrieved 2021-11-16.
  7. ^ a b "Discovering the secrets of the enigmatic caspase-6". www.stjude.org. Retrieved 2021-11-16.
  8. ^ "Breaking the dogma: Key cell death regulator has more than one way to get the job done". www.stjude.org. Retrieved 2021-11-16.
  9. ^ Kuriakose, Teneema; Man, Si Ming; Malireddi, R.K. Subbarao; Karki, Rajendra; Kesavardhana, Sannula; Place, David E.; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi (2016-08-05). "ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways". Science Immunology. 1 (2): aag2045. doi:10.1126/sciimmunol.aag2045. ISSN 2470-9468. PMC 5131924. PMID 27917412.
  10. ^ Karki, Rajendra; Sharma, Bhesh Raj; Lee, Ein; Banoth, Balaji; Malireddi, R.K. Subbarao; Samir, Parimal; Tuladhar, Shraddha; Mummareddy, Harisankeerth; Burton, Amanda R.; Vogel, Peter; Kanneganti, Thirumala-Devi (2020-06-18). "Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer". JCI Insight. 5 (12). doi:10.1172/jci.insight.136720. ISSN 2379-3708. PMC 7406299. PMID 32554929.
  11. ^ a b "Diet affects mix of intestinal bacteria and the risk of inflammatory bone disease". www.stjude.org. Retrieved 2020-09-11.
  12. ^ Malireddi, R. K. Subbarao; Karki, Rajendra; Sundaram, Balamurugan; Kancharana, Balabhaskararao; Lee, SangJoon; Samir, Parimal; Kanneganti, Thirumala-Devi (2021-07-21). "Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth". ImmunoHorizons. 5 (7): 568–580. doi:10.4049/immunohorizons.2100059. ISSN 2573-7732. PMC 8522052. PMID 34290111.
  13. ^ Karki, Rajendra; Sharma, Bhesh Raj; Tuladhar, Shraddha; Williams, Evan Peter; Zalduondo, Lillian; Samir, Parimal; Zheng, Min; Sundaram, Balamurugan; Banoth, Balaji; Malireddi, R. K. Subbarao; Schreiner, Patrick (2021-01-07). "Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes". Cell. 184 (1): 149–168.e17. doi:10.1016/j.cell.2020.11.025. ISSN 1097-4172. PMC 7674074. PMID 33278357.
  14. ^ Karki, Rajendra; Lee, SangJoon; Mall, Raghvendra; Pandian, Nagakannan; Wang, Yaqiu; Sharma, Bhesh Raj; Malireddi, Rk Subbarao; Yang, Dong; Trifkovic, Sanja; Steele, Jacob A.; Connelly, Jon P. (2022-05-19). "ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection". Science Immunology. 7 (74): eabo6294. doi:10.1126/sciimmunol.abo6294. ISSN 2470-9468. PMC 9161373. PMID 35587515.
  15. ^ Wang, Yaqiu; Pandian, Nagakannan; Han, Joo-Hui; Sundaram, Balamurugan; Lee, SangJoon; Karki, Rajendra; Guy, Clifford S.; Kanneganti, Thirumala-Devi (2022-09-28). "Single cell analysis of PANoptosome cell death complexes through an expansion microscopy method". Cellular and Molecular Life Sciences. 79 (10): 531. doi:10.1007/s00018-022-04564-z. ISSN 1420-9071. PMC 9545391. PMID 36169732.
  16. ^ Sundaram, Balamurugan; Pandian, Nagakannan; Mall, Raghvendra; Wang, Yaqiu; Sarkar, Roman; Kim, Hee Jin; Malireddi, R.K. Subbarao; Karki, Rajendra; Janke, Laura J.; Vogel, Peter; Kanneganti, Thirumala-Devi (June 2023). "NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs". Cell. 186 (13): 2783–2801.e20. doi:10.1016/j.cell.2023.05.005. PMC 10330523. PMID 37267949.
  17. ^ a b Zheng, Min; Karki, Rajendra; Vogel, Peter; Kanneganti, Thirumala-Devi (2020-04-30). "Caspase-6 Is a Key Regulator of Innate Immunity, Inflammasome Activation, and Host Defense". Cell. 181 (3): 674–687.e13. doi:10.1016/j.cell.2020.03.040. ISSN 1097-4172. PMC 7425208. PMID 32298652.
  18. ^ Christgen, Shelbi; Zheng, Min; Kesavardhana, Sannula; Karki, Rajendra; Malireddi, R. K. Subbarao; Banoth, Balaji; Place, David E.; Briard, Benoit; Sharma, Bhesh Raj; Tuladhar, Shraddha; Samir, Parimal; Burton, Amanda; Kanneganti, Thirumala-Devi (2020). "Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis)". Frontiers in Cellular and Infection Microbiology. 10: 237. doi:10.3389/fcimb.2020.00237. ISSN 2235-2988. PMC 7274033. PMID 32547960.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  19. ^ a b c Lee, SangJoon; Karki, Rajendra; Wang, Yaqiu; Nguyen, Lam Nhat; Kalathur, Ravi C.; Kanneganti, Thirumala-Devi (2021-09). "AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence". Nature. 597 (7876): 415–419. doi:10.1038/s41586-021-03875-8. ISSN 1476-4687. PMC 8603942. PMID 34471287. {{cite journal}}: Check date values in: |date= (help)
  20. ^ Malireddi, R. K. Subbarao; Kesavardhana, Sannula; Karki, Rajendra; Kancharana, Balabhaskararao; Burton, Amanda R.; Kanneganti, Thirumala-Devi (2020-12-11). "RIPK1 Distinctly Regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis". ImmunoHorizons. 4 (12): 789–796. doi:10.4049/immunohorizons.2000097. ISSN 2573-7732. PMC 7906112. PMID 33310881.
  21. ^ a b c Sundaram, Balamurugan; Pandian, Nagakannan; Mall, Raghvendra; Wang, Yaqiu; Sarkar, Roman; Kim, Hee Jin; Malireddi, R. K. Subbarao; Karki, Rajendra; Janke, Laura J.; Vogel, Peter; Kanneganti, Thirumala-Devi (2023-06-22). "NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs". Cell. 186 (13): 2783–2801.e20. doi:10.1016/j.cell.2023.05.005. ISSN 1097-4172. PMID 37267949.
  22. ^ Man, Si Ming; Kanneganti, Thirumala-Devi (2015-05). "Regulation of inflammasome activation". Immunological Reviews. 265 (1): 6–21. doi:10.1111/imr.12296. ISSN 1600-065X. PMC 4400844. PMID 25879280. {{cite journal}}: Check date values in: |date= (help)
  23. ^ Shi, Jianjin; Zhao, Yue; Wang, Kun; Shi, Xuyan; Wang, Yue; Huang, Huanwei; Zhuang, Yinghua; Cai, Tao; Wang, Fengchao; Shao, Feng (2015-10-29). "Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death". Nature. 526 (7575): 660–665. doi:10.1038/nature15514. ISSN 1476-4687. PMID 26375003.
  24. ^ He, Wan-ting; Wan, Haoqiang; Hu, Lichen; Chen, Pengda; Wang, Xin; Huang, Zhe; Yang, Zhang-Hua; Zhong, Chuan-Qi; Han, Jiahuai (2015-12). "Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion". Cell Research. 25 (12): 1285–1298. doi:10.1038/cr.2015.139. ISSN 1748-7838. PMC 4670995. PMID 26611636. {{cite journal}}: Check date values in: |date= (help)
  25. ^ Aglietti, Robin A.; Estevez, Alberto; Gupta, Aaron; Ramirez, Monica Gonzalez; Liu, Peter S.; Kayagaki, Nobuhiko; Ciferri, Claudio; Dixit, Vishva M.; Dueber, Erin C. (2016-07-12). "GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes". Proceedings of the National Academy of Sciences of the United States of America. 113 (28): 7858–7863. doi:10.1073/pnas.1607769113. ISSN 1091-6490. PMC 4948338. PMID 27339137.
  26. ^ Sborgi, Lorenzo; Rühl, Sebastian; Mulvihill, Estefania; Pipercevic, Joka; Heilig, Rosalie; Stahlberg, Henning; Farady, Christopher J.; Müller, Daniel J.; Broz, Petr; Hiller, Sebastian (2016-08-15). "GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death". The EMBO journal. 35 (16): 1766–1778. doi:10.15252/embj.201694696. ISSN 1460-2075. PMC 5010048. PMID 27418190.
  27. ^ Kayagaki, Nobuhiko; Warming, Søren; Lamkanfi, Mohamed; Vande Walle, Lieselotte; Louie, Salina; Dong, Jennifer; Newton, Kim; Qu, Yan; Liu, Jinfeng; Heldens, Sherry; Zhang, Juan; Lee, Wyne P.; Roose-Girma, Merone; Dixit, Vishva M. (2011-10-16). "Non-canonical inflammasome activation targets caspase-11". Nature. 479 (7371): 117–121. doi:10.1038/nature10558. ISSN 1476-4687. PMID 22002608.
  28. ^ Martinon, Fabio; Burns, Kimberly; Tschopp, Jürg (2002-08). "The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta". Molecular Cell. 10 (2): 417–426. doi:10.1016/s1097-2765(02)00599-3. ISSN 1097-2765. PMID 12191486. {{cite journal}}: Check date values in: |date= (help)
  29. ^ Zhao, Jie; Jitkaew, Siriporn; Cai, Zhenyu; Choksi, Swati; Li, Qiuning; Luo, Ji; Liu, Zheng-Gang (2012-04-03). "Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis". Proceedings of the National Academy of Sciences of the United States of America. 109 (14): 5322–5327. doi:10.1073/pnas.1200012109. ISSN 1091-6490. PMC 3325682. PMID 22421439.
  30. ^ Sun, Liming; Wang, Huayi; Wang, Zhigao; He, Sudan; Chen, She; Liao, Daohong; Wang, Lai; Yan, Jiacong; Liu, Weilong; Lei, Xiaoguang; Wang, Xiaodong (2012-01-20). "Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase". Cell. 148 (1–2): 213–227. doi:10.1016/j.cell.2011.11.031. ISSN 1097-4172. PMID 22265413.
  31. ^ Galluzzi, Lorenzo; Kepp, Oliver; Chan, Francis Ka-Ming; Kroemer, Guido (2017-01-24). "Necroptosis: Mechanisms and Relevance to Disease". Annual Review of Pathology. 12: 103–130. doi:10.1146/annurev-pathol-052016-100247. ISSN 1553-4014. PMC 5786374. PMID 27959630.
  32. ^ Dhuriya, Yogesh K.; Sharma, Divakar (2018-07-06). "Necroptosis: a regulated inflammatory mode of cell death". Journal of Neuroinflammation. 15 (1): 199. doi:10.1186/s12974-018-1235-0. ISSN 1742-2094. PMC 6035417. PMID 29980212.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  33. ^ Lukens, John R.; Gurung, Prajwal; Vogel, Peter; Johnson, Gordon R.; Carter, Robert A.; McGoldrick, Daniel J.; Bandi, Srinivasa Rao; Calabrese, Christopher R.; Vande Walle, Lieselotte; Lamkanfi, Mohamed; Kanneganti, Thirumala-Devi (2014-12-11). "Dietary modulation of the microbiome affects autoinflammatory disease". Nature. 516 (7530): 246–249. doi:10.1038/nature13788. ISSN 1476-4687. PMC 4268032. PMID 25274309.
  34. ^ Gurung, Prajwal; Burton, Amanda; Kanneganti, Thirumala-Devi (2016-04-19). "NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis". Proceedings of the National Academy of Sciences of the United States of America. 113 (16): 4452–4457. doi:10.1073/pnas.1601636113. ISSN 1091-6490. PMC 4843439. PMID 27071119.
  35. ^ Kuriakose, Teneema; Man, Si Ming; Malireddi, R. K. Subbarao; Karki, Rajendra; Kesavardhana, Sannula; Place, David E.; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi (2016-08-05). "ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways". Science Immunology. 1 (2): aag2045. doi:10.1126/sciimmunol.aag2045. ISSN 2470-9468. PMC 5131924. PMID 27917412.
  36. ^ Christgen, Shelbi; Zheng, Min; Kesavardhana, Sannula; Karki, Rajendra; Malireddi, R. K. Subbarao; Banoth, Balaji; Place, David E.; Briard, Benoit; Sharma, Bhesh Raj; Tuladhar, Shraddha; Samir, Parimal; Burton, Amanda; Kanneganti, Thirumala-Devi (2020). "Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis)". Frontiers in Cellular and Infection Microbiology. 10: 237. doi:10.3389/fcimb.2020.00237. ISSN 2235-2988. PMC 7274033. PMID 32547960.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  37. ^ Malireddi, R. K. Subbarao; Kesavardhana, Sannula; Karki, Rajendra; Kancharana, Balabhaskararao; Burton, Amanda R.; Kanneganti, Thirumala-Devi (2020-12-11). "RIPK1 Distinctly Regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis". ImmunoHorizons. 4 (12): 789–796. doi:10.4049/immunohorizons.2000097. ISSN 2573-7732. PMC 7906112. PMID 33310881.
  38. ^ Chen, Wen; Gullett, Jessica M.; Tweedell, Rebecca E.; Kanneganti, Thirumala-Devi (2023-11). "Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease". European Journal of Immunology. 53 (11): e2250235. doi:10.1002/eji.202250235. ISSN 1521-4141. PMID 36782083. {{cite journal}}: Check date values in: |date= (help)
  39. ^ Malireddi, R. K. Subbarao; Bynigeri, Ratnakar R.; Mall, Raghvendra; Connelly, Jon P.; Pruett-Miller, Shondra M.; Kanneganti, Thirumala-Devi (2023-10-20). "Inflammatory cell death, PANoptosis, screen identifies host factors in coronavirus innate immune response as therapeutic targets". Communications Biology. 6 (1): 1071. doi:10.1038/s42003-023-05414-9. ISSN 2399-3642. PMID 37864059.
  40. ^ Jiang, Mingxia; Qi, Ling; Li, Lisha; Wu, Yiming; Song, Dongfeng; Li, Yanjing (2021-10-01). "Caspase-8: A key protein of cross-talk signal way in "PANoptosis" in cancer". International Journal of Cancer. 149 (7): 1408–1420. doi:10.1002/ijc.33698. ISSN 1097-0215. PMID 34028029.
  41. ^ Jiang, Mingxia; Qi, Ling; Li, Lisha; Wu, Yiming; Song, Dongfeng; Li, Yanjing (2021-10-01). "Caspase-8: A key protein of cross-talk signal way in "PANoptosis" in cancer". International Journal of Cancer. 149 (7): 1408–1420. doi:10.1002/ijc.33698. ISSN 1097-0215. PMID 34028029.
  42. ^ Someda, Masataka; Kuroki, Shunsuke; Miyachi, Hitoshi; Tachibana, Makoto; Yonehara, Shin (2020-05). "Caspase-8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell differentiation and necroptosis". Cell Death and Differentiation. 27 (5): 1539–1553. doi:10.1038/s41418-019-0434-2. ISSN 1476-5403. PMC 7206185. PMID 31659279. {{cite journal}}: Check date values in: |date= (help)
  43. ^ Rodriguez, Diego A.; Quarato, Giovanni; Liedmann, Swantje; Tummers, Bart; Zhang, Ting; Guy, Cliff; Crawford, Jeremy Chase; Palacios, Gustavo; Pelletier, Stephane; Kalkavan, Halime; Shaw, Jeremy J. P.; Fitzgerald, Patrick; Chen, Mark J.; Balachandran, Siddharth; Green, Douglas R. (2022-10-11). "Caspase-8 and FADD prevent spontaneous ZBP1 expression and necroptosis". Proceedings of the National Academy of Sciences of the United States of America. 119 (41): e2207240119. doi:10.1073/pnas.2207240119. ISSN 1091-6490. PMC 9565532. PMID 36191211.
  44. ^ Cai, Hantao; Lv, Mingming; Wang, Tingting (2023-12). "PANoptosis in cancer, the triangle of cell death". Cancer Medicine. 12 (24): 22206–22223. doi:10.1002/cam4.6803. ISSN 2045-7634. PMID 38069556. {{cite journal}}: Check date values in: |date= (help)
  45. ^ Malireddi, R. K. Subbarao; Karki, Rajendra; Sundaram, Balamurugan; Kancharana, Balabhaskararao; Lee, SangJoon; Samir, Parimal; Kanneganti, Thirumala-Devi (2021-07-21). "Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth". ImmunoHorizons. 5 (7): 568–580. doi:10.4049/immunohorizons.2100059. ISSN 2573-7732. PMC 8522052. PMID 34290111.
  46. ^ Karki, Rajendra; Sharma, Bhesh Raj; Lee, Ein; Banoth, Balaji; Malireddi, R. K. Subbarao; Samir, Parimal; Tuladhar, Shraddha; Mummareddy, Harisankeerth; Burton, Amanda R.; Vogel, Peter; Kanneganti, Thirumala-Devi (2020-06-18). "Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer". JCI insight. 5 (12): e136720, 136720. doi:10.1172/jci.insight.136720. ISSN 2379-3708. PMC 7406299. PMID 32554929.
  47. ^ Sharma, Bhesh Raj; Kanneganti, Thirumala-Devi (2023-02). "Inflammasome signaling in colorectal cancer". Translational Research: The Journal of Laboratory and Clinical Medicine. 252: 45–52. doi:10.1016/j.trsl.2022.09.002. ISSN 1878-1810. PMC 9839553. PMID 36150688. {{cite journal}}: Check date values in: |date= (help)
  48. ^ Mall, Raghvendra; Bynigeri, Ratnakar R.; Karki, Rajendra; Malireddi, R. K. Subbarao; Sharma, Bhesh Raj; Kanneganti, Thirumala-Devi (2022-12). "Pancancer transcriptomic profiling identifies key PANoptosis markers as therapeutic targets for oncology". NAR cancer. 4 (4): zcac033. doi:10.1093/narcan/zcac033. ISSN 2632-8674. PMC 9623737. PMID 36329783. {{cite journal}}: Check date values in: |date= (help)
  49. ^ Pan, Hongda; Pan, Jingxin; Li, Pei; Gao, Jianpeng (2022-05). "Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer". Clinical Immunology (Orlando, Fla.). 238: 109019. doi:10.1016/j.clim.2022.109019. ISSN 1521-7035. PMID 35470064. {{cite journal}}: Check date values in: |date= (help)
  50. ^ He, Puxing; Ma, Yixuan; Wu, Yaolu; Zhou, Qing; Du, Huan (2023). "Exploring PANoptosis in breast cancer based on scRNA-seq and bulk-seq". Frontiers in Endocrinology. 14: 1164930. doi:10.3389/fendo.2023.1164930. ISSN 1664-2392. PMID 37455906.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  51. ^ Sun, Yanyan; Zhu, Changlian (2023-02). "Potential role of PANoptosis in neuronal cell death: commentary on "PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons"". Neural Regeneration Research. 18 (2): 339–340. doi:10.4103/1673-5374.346483. ISSN 1673-5374. PMC 9396522. PMID 35900425. {{cite journal}}: Check date values in: |date= (help)CS1 maint: unflagged free DOI (link)
  52. ^ Qi, Zehong; Zhu, Lili; Wang, Kangkai; Wang, Nian (2023-11-15). "PANoptosis: Emerging mechanisms and disease implications". Life Sciences. 333: 122158. doi:10.1016/j.lfs.2023.122158. ISSN 1879-0631. PMID 37806654.
  53. ^ Zhu, Peng; Ke, Zhuo-Ran; Chen, Jing-Xian; Li, Shi-Jin; Ma, Tian-Liang; Fan, Xiao-Lei (2023). "Advances in mechanism and regulation of PANoptosis: Prospects in disease treatment". Frontiers in Immunology. 14: 1120034. doi:10.3389/fimmu.2023.1120034. ISSN 1664-3224. PMC 9948402. PMID 36845112.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  54. ^ Karki, Rajendra; Sharma, Bhesh Raj; Tuladhar, Shraddha; Williams, Evan Peter; Zalduondo, Lillian; Samir, Parimal; Zheng, Min; Sundaram, Balamurugan; Banoth, Balaji; Malireddi, R. K. Subbarao; Schreiner, Patrick; Neale, Geoffrey; Vogel, Peter; Webby, Richard; Jonsson, Colleen Beth (2021-01-07). "Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes". Cell. 184 (1): 149–168.e17. doi:10.1016/j.cell.2020.11.025. ISSN 1097-4172. PMC 7674074. PMID 33278357.
  55. ^ Subbarao Malireddi, R.K.; Karki, Rajendra; Sundaram, Balamurugan; Kancharana, Balabhaskararao; Lee, SangJoon; Samir, Parimal; Kanneganti, Thirumala-Devi (2021-07-21). "Inflammatory cell death, PANoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth". ImmunoHorizons. 5 (7): 568–580. doi:10.4049/immunohorizons.2100059. ISSN 2573-7732. PMC 8522052. PMID 34290111.
  56. ^ Karki, Rajendra; Sundaram, Balamurugan; Sharma, Bhesh Raj; Lee, SangJoon; Malireddi, R.K. Subbarao; Nguyen, Lam Nhat; Christgen, Shelbi; Zheng, Min; Wang, Yaqiu; Samir, Parimal; Neale, Geoffrey; Vogel, Peter; Kanneganti, Thirumala-Devi (2021-10-19). "ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis". Cell reports. 37 (3): 109858. doi:10.1016/j.celrep.2021.109858. ISSN 2211-1247. PMC 8853634. PMID 34686350.
  57. ^ Karki, Rajendra; Kanneganti, Thirumala-Devi (2021-8). "The 'Cytokine Storm': molecular mechanisms and therapeutic prospects". Trends in immunology. 42 (8): 681–705. doi:10.1016/j.it.2021.06.001. ISSN 1471-4906. PMC 9310545. PMID 34217595. {{cite journal}}: Check date values in: |date= (help)
  58. ^ Karki, Rajendra; Sharma, Bhesh Raj; Tuladhar, Shraddha; Williams, Evan Peter; Zalduondo, Lillian; Samir, Parimal; Zheng, Min; Sundaram, Balamurugan; Banoth, Balaji; Malireddi, R.K. Subbarao; Schreiner, Patrick; Neale, Geoffrey; Vogel, Peter; Webby, Richard; Jonsson, Colleen Beth (2021-01-07). "Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes". Cell. 184 (1): 149–168.e17. doi:10.1016/j.cell.2020.11.025. ISSN 0092-8674. PMC 7674074. PMID 33278357.
  59. ^ Oh, SuHyeon; Lee, SangJoon (2023). "Recent advances in ZBP1-derived PANoptosis against viral infections". Frontiers in Immunology. 14: 1148727. doi:10.3389/fimmu.2023.1148727. ISSN 1664-3224. PMID 37261341.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  60. ^ Schifanella, Luca; Anderson, Jodi; Wieking, Garritt; Southern, Peter J.; Antinori, Spinello; Galli, Massimo; Corbellino, Mario; Lai, Alessia; Klatt, Nichole; Schacker, Timothy W.; Haase, Ashley T. (2023-05-29). "The Defenders of the Alveolus Succumb in COVID-19 Pneumonia to SARS-CoV-2 and Necroptosis, Pyroptosis, and PANoptosis". The Journal of Infectious Diseases. 227 (11): 1245–1254. doi:10.1093/infdis/jiad056. ISSN 1537-6613. PMID 36869698.
  61. ^ Han, Joo-Hui; Karki, Rajendra; Malireddi, R. K. Subbarao; Mall, Raghvendra; Sarkar, Roman; Sharma, Bhesh Raj; Klein, Jonathon; Berns, Harmut; Pisharath, Harshan; Pruett-Miller, Shondra M.; Bae, Sung-Jin; Kanneganti, Thirumala-Devi (2024-02-26). "NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress". Nature Communications. 15 (1): 1739. doi:10.1038/s41467-024-45466-x. ISSN 2041-1723. PMID 38409108. {{cite journal}}: no-break space character in |title= at position 98 (help)