Jump to content

Cobalamin biosynthesis: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Created page with '{{Infobox protein family | Symbol = CobD_Cbib | Name = CobD_Cbib | image = | width = | caption = | Pfam = PF03186 | Pfam_clan = | InterPro = IPR004485 | SMART ...'
(No difference)

Revision as of 08:35, 4 July 2011

CobD_Cbib
Identifiers
SymbolCobD_Cbib
PfamPF03186
InterProIPR004485
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
CobS
Identifiers
SymbolCobS
PfamPF02654
InterProIPR003805
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
CobT
Identifiers
SymbolCobT
PfamPF06213
InterProIPR006538
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
CobU
adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase (cobu) from salmonella typhimurium
Identifiers
SymbolCobU
PfamPF02283
Pfam clanCL0023
InterProIPR003203
SCOP21cbu / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
cobW
yjia protein
Identifiers
SymbolcobW
PfamPF02492
Pfam clanCL0023
InterProIPR003495
SCOP21nij / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
CobW C terminal
yjia protein
Identifiers
SymbolCobW_C
PfamPF07683
InterProIPR011629
SCOP21nij / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
CbiA
dethiobiotin synthetase complexed with 7,8-diamino-nonanoic acid, 5'-adenosyl-methylene-triphosphate, and manganese
Identifiers
SymbolCbiA
PfamPF01656
Pfam clanCL0023
InterProIPR002586
SCOP21dts / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
CbiD
structural genomics, 1.9a crystal structure of cobalamin biosynthesis protein (cbid) from archaeoglobus fulgidus
Identifiers
SymbolCbiD
PfamPF01888
InterProIPR002748
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
CbiG N terminus
Identifiers
SymbolCbiG_N
PfamPF11760
InterProIPR021744
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
CbiG central region
Identifiers
SymbolCbiG_mid
PfamPF11761
InterProIPR021745
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
CbiG C terminus
Identifiers
SymbolCbiG_C
PfamPF01890
InterProIPR002750
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
CbiJ
Identifiers
SymbolCbiJ
PfamPF02571
InterProIPR003723
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
CbiM
Identifiers
SymbolCbiM
PfamPF01891
Pfam clanCL0315
InterProIPR002751
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
CbiN
Identifiers
SymbolCbiN
PfamPF02553
InterProIPR003705
TCDB3.A.1
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
CbiQ
Identifiers
SymbolCbiQ
PfamPF02361
InterProIPR003339
TCDB3.A.1
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

In molecular biology, cobalamin biosynthesis is the synthesis of cobalamin (vitamin B12).

Cobalamin (vitamin B12) is a structurally complex cofactor, consisting of a modified tetrapyrrole with a centrally chelated cobalt. Cobalamin is usually found in one of two biologically active forms: methylcobalamin and adocobalamin. Most prokaryotes, as well as animals, have cobalamin-dependent enzymes, whereas plants and fungi do not appear to use it. In bacteria and archaea, these include methionine synthase, ribonucleotide reductase, glutamate and methylmalonyl-CoA mutases, ethanolamine ammonia lyase, and diol dehydratase.[1] In mammals, cobalamin is obtained through the diet, and is required for methionine synthase and methylmalonyl-CoA mutase.[2]

There are at least two distinct cobalamin biosynthetic pathways in bacteria [3]:

Either pathway can be divided into two parts:

  • Corrin ring synthesis (differs in aerobic and anaerobic pathways)
  • Adenosylation of corrin ring, attachment of aminopropanol arm, and assembly of the nucleotide loop (common to both pathways).[6]

There are about 30 enzymes involved in either pathway, where those involved in the aerobic pathway are prefixed Cob and those of the anaerobic pathway Cbi. Several of these enzymes are pathway-specific: CbiD, CbiG, and CbiK are specific to the anaerobic route of S. typhimurium, whereas CobE, CobF, CobG, CobN, CobS, CobT, and CobW are unique to the aerobic pathway of P. denitrificans.

The CbiB or CobD protein converts cobyric acid to cobinamide by the addition of aminopropanol on the F carboxylic group. It is part of the cob operon.[7]

Aerobic cobalt chelatase consists of three subunits, CobT, CobN and CobS. Cobalamin (vitamin B12) can be complexed with metal via the ATP-dependent reactions (aerobic pathway) (e.g., in P. denitrificans) or via ATP-independent reactions (anaerobic pathway) (e.g., in Salmonella typhimurium).[8][9] The corresponding cobalt chelatases are not homologous. However, aerobic cobalt chelatase subunits CobN and CobS are homologous to Mg-chelatase subunits BchH and BchI, respectively.[9] CobT, too, has been found to be remotely related to the third subunit of Mg-chelatase, BchD (involved in bacteriochlorophyll synthesis, e.g., in Rhodobacter capsulatus).[9]

The CobS protein is a cobalamin-5-phosphate synthase that catyalzes the reactions:

  • Adenosylcobinamide-GDP + alpha-ribazole-5'-P = adenosylcobalamin-5'-phosphate + GMP
  • Adenosylcobinamide-GDP + alpha-ribazole = adenosylcobalamin + GMP

The protein product from these catalyses is associated with a large complex of proteins and is induced by cobinamide. CobS is involved in part III of cobalamin biosynthesis, one of the late steps in adenosylcobalamin synthesis that, together with CobU, CobT, and CobC proteins, defines the nucleotide loop assembly pathway.[10][11]

CobU proteins are bifunctional cobalbumin biosynthesis enzymes which display cobinamide kinase and cobinamide phosphate guanyltransferase activity. The crystal structure of the enzyme reveals the molecule to be a trimer with a propeller-like shape.[12]

CobW proteins are generally found proximal to the trimeric cobaltochelatase subunit CobN, which is essential for vitamin B12 (cobalamin) biosynthesis.[1] They contain a P-loop nucleotide-binding loop in the N-terminal domain and a histidine-rich region in the C-terminal portion suggesting a role in metal binding, possibly as an intermediary between the cobalt transport and chelation systems. CobW might be involved in cobalt reduction leading to cobalt(I) corrinoids. CobW-like proteins include P47K, a Pseudomonas chlororaphis protein needed for nitrile hydratase expression,[13] and urease accessory protein UreG, which acts as a chaperone in the activation of urease upon insertion of nickel into the active site.[14]

The CbiA family of proteins consists of various cobyrinic acid a,c-diamide synthases. These include CbiA and CbiP from Salmonella typhimurium.,[15] and CobQ from Rhodobacter capsulatus.[16] These amidases catalyse amidations to various side chains of hydrogenobyrinic acid or cobyrinic acid a,c-diamide in the biosynthesis of cobalamin (vitamin B12) from uroporphyrinogen III.[15]

CbiD is an essential protein for cobalamin biosynthesis in both Salmonella typhimurium and Bacillus megaterium. A deletion mutant of CbiD suggests that this enzyme is involved in C-1 methylation and deacylation reactions required during the ring contraction process in the anaerobic pathway to cobalamin (similar role as CobF).[17] The CbiD protein has a putative S-AdoMet binding site.[18] CbiD has no counterpart in the aerobic pathway.

CbiG proteins are specific for anaerobic cobalamin biosynthesis. CbiG, which shows homology with CobE of the aerobic pathway, participates in the conversion of cobalt-precorrin 5 into cobalt-precorrin 6.[19] CbiG is responsible for the opening of the delta-lactone ring and extrusion of the C2-unit.[20] The aerobic pathway uses molecular oxygen to trigger the events at C-20 leading to contraction and expulsion of the C2-unit as acetic acid from a metal-free intermediate, whereas the anaerobic route involves the internal delivery of oxygen from a carboxylic acid terminus to C-20 followed by extrusion of the C2-unit as acetaldehyde, using cobalt complexes as substrates.[20]

The CbiJ family of proteins includes the CobK and CbiJ precorrin-6x reductases EC 1.3.1.54. In the aerobic pathway, CobK catalyses the reduction of the macrocycle of precorrin-6X to produce precorrin-6Y; while in the anaerobic pathway CbiJ catalyses the reduction of the macrocycle of cobalt-precorrin-6X into cobalt-precorrin-6Y.[21][22]

CbiM is an intergral membrane protein which is involved in cobalamin synthesis, its exact function in unknown.

The cobalt transport protein CbiN is part of the active cobalt transport system involved in uptake of cobalt in to the cell involved with cobalamin biosynthesis (vitamin B12). It has been suggested that CbiN may function as the periplasmic binding protein component of the active cobalt transport system.[16]

References

  1. ^ a b Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2003). "Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes". J. Biol. Chem. 278 (42): 41148–59. doi:10.1074/jbc.M305837200. PMID 12869542. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  2. ^ Banerjee R (2006). "B12 trafficking in mammals: A for coenzyme escort service". ACS Chem. Biol. 1 (3): 149–59. doi:10.1021/cb6001174. PMID 17163662. {{cite journal}}: Unknown parameter |month= ignored (help)
  3. ^ Roessner CA, Santander PJ, Scott AI (2001). "Multiple biosynthetic pathways for vitamin B12: variations on a central theme". Vitam. Horm. 61: 267–97. PMID 11153269.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Heldt D, Lawrence AD, Lindenmeyer M, Deery E, Heathcote P, Rigby SE, Warren MJ (2005). "Aerobic synthesis of vitamin B12: ring contraction and cobalt chelation". Biochem. Soc. Trans. 33 (Pt 4): 815–9. doi:10.1042/BST0330815. PMID 16042605. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  5. ^ Roessner CA, Huang KX, Warren MJ, Raux E, Scott AI (2002). "Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii)". Microbiology (Reading, Engl.). 148 (Pt 6): 1845–53. PMID 12055304. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  6. ^ Raux E, Schubert HL, Warren MJ (2000). "Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum". Cell. Mol. Life Sci. 57 (13–14): 1880–93. PMID 11215515. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  7. ^ Woodson JD, Zayas CL, Escalante-Semerena JC (2003). "A new pathway for salvaging the coenzyme B12 precursor cobinamide in archaea requires cobinamide-phosphate synthase (CbiB) enzyme activity". J. Bacteriol. 185 (24): 7193–201. PMC 296239. PMID 14645280. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  8. ^ Roth JR, Lawrence JG, Bobik TA (1996). "Cobalamin (coenzyme B12): synthesis and biological significance". Annu. Rev. Microbiol. 50: 137–81. doi:10.1146/annurev.micro.50.1.137. PMID 8905078.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ a b c Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD, Al-Karadaghi S (2001). "Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase". J. Mol. Biol. 311 (1): 111–22. doi:10.1006/jmbi.2001.4834. PMID 11469861. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  10. ^ Maggio-Hall LA, Escalante-Semerena JC (1999). "In vitro synthesis of the nucleotide loop of cobalamin by Salmonella typhimurium enzymes". Proc. Natl. Acad. Sci. U.S.A. 96 (21): 11798–803. PMC 18366. PMID 10518530. {{cite journal}}: Unknown parameter |month= ignored (help)
  11. ^ Maggio-Hall LA, Claas KR, Escalante-Semerena JC (2004). "The last step in coenzyme B(12) synthesis is localized to the cell membrane in bacteria and archaea". Microbiology (Reading, Engl.). 150 (Pt 5): 1385–95. PMID 15133100. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  12. ^ Thompson TB, Thomas MG, Escalante-Semerena JC, Rayment I (1998). "Three-dimensional structure of adenosylcobinamide kinase/adenosylcobinamide phosphate guanylyltransferase from Salmonella typhimurium determined to 2.3 A resolution,". Biochemistry. 37 (21): 7686–95. doi:10.1021/bi973178f. PMID 9601028. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  13. ^ Hashimoto Y, Nishiyama M, Horinouchi S, Beppu T (1994). "Nitrile hydratase gene from Rhodococcus sp. N-774 requirement for its downstream region for efficient expression". Biosci. Biotechnol. Biochem. 58 (10): 1859–65. PMID 7765511. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  14. ^ Zambelli B, Musiani F, Savini M, Tucker P, Ciurli S (2007). "Biochemical studies on Mycobacterium tuberculosis UreG and comparative modeling reveal structural and functional conservation among the bacterial UreG family". Biochemistry. 46 (11): 3171–82. doi:10.1021/bi6024676. PMID 17309280. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  15. ^ a b Pollich M, Klug G (1995). "Identification and sequence analysis of genes involved in late steps in cobalamin (vitamin B12) synthesis in Rhodobacter capsulatus". J. Bacteriol. 177 (15): 4481–7. PMC 177200. PMID 7635831. {{cite journal}}: Unknown parameter |month= ignored (help)
  16. ^ a b Roth JR, Lawrence JG, Rubenfield M, Kieffer-Higgins S, Church GM (1993). "Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium". J. Bacteriol. 175 (11): 3303–16. PMC 204727. PMID 8501034. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  17. ^ Roessner CA, Williams HJ, Scott AI (2005). "Genetically engineered production of 1-desmethylcobyrinic acid, 1-desmethylcobyrinic acid a,c-diamide, and cobyrinic acid a,c-diamide in Escherichia coli implies a role for CbiD in C-1 methylation in the anaerobic pathway to cobalamin". J. Biol. Chem. 280 (17): 16748–53. doi:10.1074/jbc.M501805200. PMID 15741157. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  18. ^ Raux E, Lanois A, Warren MJ, Rambach A, Thermes C (1998). "Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon". Biochem. J. 335 ( Pt 1): 159–66. PMC 1219764. PMID 9742225. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  19. ^ Scott AI, Roessner CA (2002). "Biosynthesis of cobalamin (vitamin B(12))". Biochem. Soc. Trans. 30 (4): 613–20. doi:10.1042/. PMID 12196148. {{cite journal}}: Check |doi= value (help); Unknown parameter |month= ignored (help)
  20. ^ a b Kajiwara Y, Santander PJ, Roessner CA, Pérez LM, Scott AI (2006). "Genetically engineered synthesis and structural characterization of cobalt-precorrin 5A and -5B, two new intermediates on the anaerobic pathway to vitamin B12: definition of the roles of the CbiF and CbiG enzymes". J. Am. Chem. Soc. 128 (30): 9971–8. doi:10.1021/ja062940a. PMID 16866557. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  21. ^ Kim W, Major TA, Whitman WB (2005). "Role of the precorrin 6-X reductase gene in cobamide biosynthesis in Methanococcus maripaludis". Archaea. 1 (6): 375–84. PMC 2685584. PMID 16243778. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  22. ^ Shearer N, Hinsley AP, Van Spanning RJ, Spiro S (1999). "Anaerobic growth of Paracoccus denitrificans requires cobalamin: characterization of cobK and cobJ genes". J. Bacteriol. 181 (22): 6907–13. PMC 94164. PMID 10559155. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
This article incorporates text from the public domain Pfam and InterPro: IPR004485
This article incorporates text from the public domain Pfam and InterPro: IPR003805
This article incorporates text from the public domain Pfam and InterPro: IPR006538
This article incorporates text from the public domain Pfam and InterPro: IPR003203
This article incorporates text from the public domain Pfam and InterPro: IPR003495
This article incorporates text from the public domain Pfam and InterPro: IPR011629
This article incorporates text from the public domain Pfam and InterPro: IPR002586
This article incorporates text from the public domain Pfam and InterPro: IPR002748
This article incorporates text from the public domain Pfam and InterPro: IPR002750
This article incorporates text from the public domain Pfam and InterPro: IPR003723
This article incorporates text from the public domain Pfam and InterPro: IPR002751
This article incorporates text from the public domain Pfam and InterPro: IPR003705