Cuscuta: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
FoCuSandLeArN (talk | contribs)
Added reference
FoCuSandLeArN (talk | contribs)
Added reference
Line 141: Line 141:
*{{cite journal|last1=Haupt|first1=S.|title=Macromolecular trafficking between Nicotiana tabacum and the holoparasite Cuscuta reflexa|journal=Journal of Experimental Botany|volume=52|issue=354|year=2001|pages=173–177|issn=14602431|doi=10.1093/jexbot/52.354.173}}
*{{cite journal|last1=Haupt|first1=S.|title=Macromolecular trafficking between Nicotiana tabacum and the holoparasite Cuscuta reflexa|journal=Journal of Experimental Botany|volume=52|issue=354|year=2001|pages=173–177|issn=14602431|doi=10.1093/jexbot/52.354.173}}
*{{cite journal|last1=Machado|first1=M.A.|last2=Zetsche|first2=K.|title=A structural, functional and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea|journal=Planta|volume=181|issue=1|year=1990|issn=0032-0935|doi=10.1007/BF00202329}}
*{{cite journal|last1=Machado|first1=M.A.|last2=Zetsche|first2=K.|title=A structural, functional and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea|journal=Planta|volume=181|issue=1|year=1990|issn=0032-0935|doi=10.1007/BF00202329}}
*{{cite journal|last1=Hibberd|first1=J. M.|last2=Bungard|first2=R. A.|last3=Press|first3=M. C.|last4=Jeschke|first4=W. D.|last5=Scholes|first5=J. D.|last6=Quick|first6=W. P.|title=Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa|journal=Planta|volume=205|issue=4|year=1998|pages=506–513|issn=0032-0935|doi=10.1007/s004250050349}}


==External links==
==External links==

Revision as of 01:27, 29 August 2012

Cuscuta
Cuscuta europaea on Sambucus ebulus
Scientific classification
Kingdom:
(unranked):
(unranked):
(unranked):
Order:
Family:
Genus:
Cuscuta

Species

About 100-170 species, including:
Cuscuta approximata
Cuscuta californica
Cuscuta epithymum
Cuscuta europaea
Cuscuta pentagona
Cuscuta salina

Cuscuta (Dodder) is a genus of about 100-170 species of yellow, orange or red (rarely green) parasitic plants. Formerly treated as the only genus in the family Cuscutaceae, recent genetic research by the Angiosperm Phylogeny Group has shown that it is correctly placed in the morning glory family, Convolvulaceae. The genus is found throughout the temperate to tropical regions of the world, with the greatest species diversity in subtropical and tropical regions; the genus becomes rare in cool temperate climates, with only four species native to northern Europe.

Old folk names include devil's guts, devil's hair, devil's ringlet, goldthread, hailweed, hairweed, hellbine, love vine, pull-down, strangleweed, angel hair, and witch's hair.[1]

Appearance

Dodder can be identified by its thin stems appearing leafless, with the leaves reduced to minute scales. From mid-summer to early autumn, the vines can produce small fruit that take the same color as the vine, and are approximately the size of a common pea. It has very low levels of chlorophyll; some species such as Cuscuta reflexa can photosynthesize slightly, while others such as C. europaea are entirely dependent on the host plants for nutrition.[2]

Cuscuta europaea in flower

Dodder flowers range in color from white to pink to yellow to cream. Some flower in the early summer, others later, depending on the species. The seeds are minute and produced in large quantities. They have a hard coating, and can survive in the soil for 5–10 years or more.

Dodder seeds sprout at or near the surface of the soil. While dodder germination can occur without a host, it has to reach a green plant quickly; dodder grows toward the smell of nearby plants.[1] If a plant is not reached within 5 to 10 days of germination, the dodder seedling will die. Before a host plant is reached, the dodder, as other plants, relies on food reserves in the embryo; the cotyledons, though present, are vestigial.[3]

Cuscuta on acacia tree in Punjab India

Parasitism

After a dodder attaches itself to a plant, it wraps itself around it. If the host contains food beneficial to dodder, the dodder produces haustoria that insert themselves into the vascular system of the host. The original root of the dodder in the soil then dies. The dodder can grow and attach itself to multiple plants. In tropical areas it can grow more or less continuously, and may reach high into the canopy of shrubs and trees; in temperate regions it is an annual plant and is restricted to relatively low vegetation that can be reached by new seedlings each spring.

Dodder is parasitic on a very wide variety of plants, including a number of agricultural and horticultural crop species, such as alfalfa, lespedeza, flax, clover, potatoes, chrysanthemum, dahlia, helenium, trumpet vine, ivy and petunias, among others.

Dodder ranges in severity based on its species and the species of the host, the time of attack, and whether any viruses are also present in the host plant. By debilitating the host plant, dodder decreases the ability of plants to resist viral diseases, and dodder can also spread plant diseases from one host to another if it is attached to more than one plant.

Host finding

A report published in Science (Vol 313; Sept. 29, 2006) by Runyon, Mescher, and De Moraes, researchers at Penn State University, demonstrates that dodder use airborne volatile organic compound cues to locate their host plants. Seedlings of Cuscuta pentagona exhibit positive growth responses to volatiles released by tomato and other species of host plants. When given a choice between volatiles released by the preferred host tomato and the non-host wheat, the parasite exhibited preferential growth toward the former. Further experiments demonstrated attraction to a number of individual compounds released by host plants and repellance by one compound released by wheat. These results do not rule out the possibility that other cues (e.g., light) may also play a role in host location.[4][5][6]

Prevention and treatment

This dodder is engulfing a sage in the Mojave Desert.

Many countries have laws prohibiting import of dodder seed, requiring crop seeds to be free of dodder seed contamination. Before planting, all clothes should be inspected for dodder seed when moving from an infested area to a non-infested crop. When dealing with an infested area, swift action is necessary. Recommendations include planting a non-host crop for several years after the infestation, pulling up host crops immediately, particularly before the dodder produces seed, and use of preemergent herbicides such as Dacthal in the spring. Examples of non-host crops include grasses and many other monocotyledons. If dodder is found before it chokes a host plant, it may be simply removed from the soil. If choking has begun, the host plant must be pruned significantly lower than the dodder, as dodder is versatile and can grow back if present from haustoria.

Selected species

Uses

The petroleum ether extract of C. reflexa may be useful in treatment of androgen induced alopecia by inhibiting the enzyme 5alpha-reductase.[9]

C. chinensis seeds (Chinese=Tu-Si-Zi) have long been used for the treatment of osteoporosis in China and some Asian countries. Kaempferol and hyperoside may be the active compounds that have osteogenic effect. [10]

C. chinensis is a commonly used traditional Chinese medicine to nourish the energetic liver and kidney matrices.[11]

Gallery

References

  1. ^ a b "Devious Dodder Vine Sniffs Out Its Victims". National Public Radio. Retrieved 2007-07-21. Some flowers release a pleasing fragrance. Other plants smell. And then there's the parasitic dodder vine, which has the remarkable ability to sniff out its victims. Farmers have placed the dodder –- aka "Strangleweed," "Devil Guts," and "Witches Shoelaces" -– on a ten most-wanted list of weeds. {{cite news}}: Cite has empty unknown parameter: |coauthors= (help)
  2. ^ Machado, M.A. & Zetsche, K. (1990) A structural, functional and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea. Planta 181: 91-96.
  3. ^ Macpherson, G.E. (1921) Comparison of development in dodder and morning glory. Botanical Gazette 71: 392-398.
  4. ^ David Tenenbaum (2006). "The Why Files". University of Wisconsin, Board of Regents. Retrieved 2010-06-22. {{cite web}}: Text "Fatal floral bouquet" ignored (help) [dead link]
  5. ^ "Parasitic Weed Seems to Smell Its Prey". Associated Press. 2006. Retrieved 2010-06-22.
  6. ^ http://content.yudu.com/Library/A1og25/PlantsADifferentPers/resources/73.htm
  7. ^ "kaunaʻoa, kaunaʻoa kahakai, kaunaʻoa lei, kaunoʻa, pololo, kaunoʻa pehu, kaunoʻa uli". Hawaii Ethnobotany Online Database. Bernice P. Bishop Museum. Retrieved 2011-10-21.
  8. ^ "Cuscuta sandwichiana". Hawaiian Native Plant Propagation Database. University of Hawaiʻi at Mānoa. Retrieved 2009-03-13.
  9. ^ Pandit S, Chauhan NS, Dixit VK.,"Effect of Cuscuta reflexa Roxb on androgen-induced alopecia." J Cosmet Dermatol. 2008 Sep;7(3):199-204
  10. ^ Yang L, Chen Q, Wang F, Zhang G"Antiosteoporotic compounds from seeds of Cuscuta chinensis. J Ethnopharmacol. 2011 May 17;135(2):553-60
  11. ^ Yen FL, Wu TH, Lin LT, Cham TM, Lin CC.,"Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats." Food Chem Toxicol. 2008 Jan 20;

Further reading

  • Everitt, J.H. (2007). Weeds in South Texas and Northern Mexico. Lubbock: Texas Tech University Press. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help) ISBN 0-89672-614-2
  • Haupt, S. (2001). "Macromolecular trafficking between Nicotiana tabacum and the holoparasite Cuscuta reflexa". Journal of Experimental Botany. 52 (354): 173–177. doi:10.1093/jexbot/52.354.173. ISSN 1460-2431.
  • Machado, M.A.; Zetsche, K. (1990). "A structural, functional and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea". Planta. 181 (1). doi:10.1007/BF00202329. ISSN 0032-0935.
  • Hibberd, J. M.; Bungard, R. A.; Press, M. C.; Jeschke, W. D.; Scholes, J. D.; Quick, W. P. (1998). "Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa". Planta. 205 (4): 506–513. doi:10.1007/s004250050349. ISSN 0032-0935.

External links