Jump to content

Microbiomes of the built environment: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Added additional information on allergy and asthma and dust microbomes
Line 85: Line 85:


== Components of the Built Environment that Impact Microbiomes ==
== Components of the Built Environment that Impact Microbiomes ==
A major component of studies of Microbiomes of the Built Environment involves determining how components of the built environment impact these microbes and microbial communities. Factors that are thought to be important include humidity, pH, chemical exposures, temperature, filtration, surface materials, and air flow.<ref>http://nas-sites.org/builtmicrobiome/about-the-study-2/</ref>
A major component of studies of Microbiomes of the Built Environment involves determining how components of the built environment impact these microbes and microbial communities. Factors that are thought to be important include humidity, pH, chemical exposures, temperature, filtration, surface materials, and air flow.<ref>http://nas-sites.org/builtmicrobiome/about-the-study-2/</ref> There has been an effort to develop standards for what built environment "metadata" to collect associated with studies of the microbial communities in the built environment. <ref>{{Cite journal|last=Glass|first=Elizabeth M.|last2=Dribinsky|first2=Yekaterina|last3=Yilmaz|first3=Pelin|last4=Levin|first4=Hal|last5=Van Pelt|first5=Robert|last6=Wendel|first6=Doug|last7=Wilke|first7=Andreas|last8=Eisen|first8=Jonathan A.|last9=Huse|first9=Sue|date=2014-01-01|title=MIxS-BE: a MIxS extension defining a minimum information standard for sequence data from the built environment|url=http://www.nature.com/ismej/journal/v8/n1/full/ismej2013176a.html|journal=The ISME Journal|language=en|volume=8|issue=1|pages=1–3|doi=10.1038/ismej.2013.176|issn=1751-7362|pmc=3869023|pmid=24152717}}</ref> In addition many tools are available to improve the built environment data that is collected associated with such studies. <ref>{{Cite journal|last=Ramos|first=Tiffanie|last2=Stephens|first2=Brent|date=2014-11-01|title=Tools to improve built environment data collection for indoor microbial ecology investigations|url=http://www.sciencedirect.com/science/article/pii/S0360132314002200|journal=Building and Environment|volume=81|pages=243–257|doi=10.1016/j.buildenv.2014.07.004}}</ref>


== Methods Used ==
== Methods Used ==

Revision as of 16:22, 20 August 2016

Microbiomes of the built environment [1][2] is a field of inquiry focusing on the study of the communities of microorganisms found in human constructed environments (i.e., the built environment). It is also sometimes referred to as "microbiology of the built environment".

This field encompasses studies of any kind of microorganism (e.g. bacteria, archaea, viruses, various microbial eukaryotes including yeasts, and others sometimes generally referred to as protists) and studies of any kind of built environment such as buildings, vehicles, and water systems.

Some key highlights emphasizing the growing importance of the field include:

A 2016 paper by Brent Stephens [6] highlights some of the key findings of studies of "microbiomes of the indoor environment". These key findings include those listed below:

  • "Culture-independent methods reveal vastly greater microbial diversity compared to culture-based methods"
  • "Indoor spaces often harbor unique microbial communities"
  • "Indoor bacterial communities often originate from indoor sources."
  • "Humans are also major sources of bacteria to indoor air"
  • "Building design and operation can influence indoor microbial communities."

The microbiomes of the built environment are being studied for multiple reasons including how they may impact the health of humans and other organisms occupying the built environment but also some non health reasons such as as diagnostics of building properties, for forensic application, impact on food production, impact on built environment function, and more.

Types of Built Environments Being Studied

In the last few years there have been a growing number of studies of the microbiomes of built environments with an emphasis on the use of high throughout DNA sequencing to study the communities of microbes present in these systems. Major categories of built environments that have been studied in regard to their microbiomes include:

Buildings

Many categories of buildings have been under investigation for their microbiomes. Examples include those listed below.

Vehicles

Water systems

General Biogeography

Overall the many studies that have been conducted on the microbiomes of the built environment have started to identify some general patterns regarding the microbes are found in various places. For example, Adams et al, in a comparative analysis of ribosomal RNA based studies in the built environment found that geography and building type had strong associations with the types of microbes seen in the built environment.[48]. Pakpour et al in 2016 reviewed the patterns relating to the presence of archaea in indoor environments (based on analysis of rRNA gene sequence data [49].

Human Health and Microbiomes of the Built Environment

Many studies have documented possible human health implications of the microbiomes of the built environment (e.g.,[50] ). Examples include those below.

Newborn colonization

The microbes that colonize newborns come in part from the built environment (e.g., hospital rooms). This appears to be especially true for babies born by C-section (see for example Shin et al. 2016 [51]) and also babies that spend time in a NICU [52].

Risk of allergy and asthma

The risk of allergy and asthma is correlated to differences in the built environment microbiome. Some experimental tests (e.g., in mice) have suggested that these correlations may actually be causal (i.e., the differences in the microbiomes may actually lead to differences in risk of allergy or asthma). Review papers on this topic include Casas et al. 2016 [53] and Fujimura and Lynch 2015 [54]. Studies of dust in various homes has shown that the microbiome found in the dust is correlated to the risk of children in those homes developing allergy, asthma, or phenotypes connected to these ailments. [55] [56] [57]

The impact of the microbiome of the built environment on the risk of allergy and asthma and other inflammatory or immune conditions is a possible mechanism underlying what is known as the hygiene hypothesis.

Mental health

In a 2015 review Hoisington et al. discuss possible connections between the microbiology of the built environment and human health.[58] The concept presented in this paper is that more and more evidence is accumulating that the human microbiome has some impact on the brain and thus if the built environment either directly or indirectly impacts the human microbiome, this in turn could have impacts on human mental health.

Pathogen transmission

Many pathogens are transmitted in the built environment and may also reside in the built environment for some period of time [59]. Good examples include influenza, Norovirus, Legionella, and MRSA. The study of the transmission and survival of these pathogens is a component of studies of microbiomes of the built environment.

Indoor Air Quality

One aspect of the health impact of microbes in the built environment involves the microbes in air. Microbes in indoor air have been studies for many years. See for example the discussion of Legionella and bacteria on the Indoor air quality page.

Connection to Microbial Forensics

The microbiome of the built environment has some potential for being used as a feature for forensic studies. Examples are discussed below. Most of these applications are still in the early research phase.

  • People leave behind a somewhat diagnostic microbial signature when they type on computer keyboards.[60] See also this Wired story about this work.
  • People leave behind potentially diagnostic signature microbial DNA on phones when they use them [61]
  • The occupants of a room leave behind microbial DNA that may be useful as a forensic tool [10]
  • Microbiome analysis may be useful in analysis of cadavers to determine time of death.[62] [63] If the cadaver was found in the built environment then it likely will accumulate microbes that have a built environment connection.

Components of the Built Environment that Impact Microbiomes

A major component of studies of Microbiomes of the Built Environment involves determining how components of the built environment impact these microbes and microbial communities. Factors that are thought to be important include humidity, pH, chemical exposures, temperature, filtration, surface materials, and air flow.[64] There has been an effort to develop standards for what built environment "metadata" to collect associated with studies of the microbial communities in the built environment. [65] In addition many tools are available to improve the built environment data that is collected associated with such studies. [66]

Methods Used

Many methods are used to study microbes in built environment. A review of such methods are some of the challenges in using them was published by NIST: Challenges in Microbial Sampling in the Indoor Environment. Hoisington et al. in 2015 reviewed methods that could be used by building professionals to study the microbiology of the built environment.[67] Methods used in the study of microbes in the built environment include culturing (with subsequent studies of the cultured microbes), microscopy, air, water and surface sampling, chemical analyses, and culture independent DNA studies such as ribosomal RNA gene PCR and metagenomics.

Examples of projects

There are a growing number of research projects and groups focusing directly or indirectly on microbiomes of the built environment. Some of these are targeted towards specific environments (e.g., homes, hospitals, showerheads) and others are broader (e.g., BIMERC, the BioBE Center). More detail about some of these projects is below.

News and related coverage

See also

External links

References

  1. ^ Konya, Theodore; Scott, James A. (2014). "Recent Advances in the Microbiology of the Built Environment". Current Sustainable/Renewable Energy Reports. 1 (2): 35–42. doi:10.1007/s40518-014-0007-4. ISSN 2196-3010.
  2. ^ Corsi, Richard L.; Kinney, Kerry A.; Levin, Hal (2012). "Microbiomes of built environments: 2011 symposium highlights and workgroup recommendations". Indoor Air. 22 (3): 171–172. doi:10.1111/j.1600-0668.2012.00782.x. ISSN 0905-6947.
  3. ^ http://www.sloan.org/major-program-areas/basic-research/mobe/
  4. ^ http://www.aaas.org/event/microbiomes-built-environment
  5. ^ Richmod, Dylan. "FAQ: Microbiology of Built Environments". academy.asm.org. Retrieved 2016-07-27.
  6. ^ Stephens, Brent; Gibbons, Sean Michael (2016). "What Have We Learned about the Microbiomes of Indoor Environments?: TABLE 1". mSystems. 1 (4): e00083-16. doi:10.1128/mSystems.00083-16. ISSN 2379-5077.
  7. ^ Lax, Simon, et al. "Longitudinal analysis of microbial interaction between humans and the indoor environment." Science 345.6200 (2014): 1048-1052. http://dx.doi.org/10.1126/science.1254529
  8. ^ Barberán, Albert; Dunn, Robert R.; Reich, Brian J.; Pacifici, Krishna; Laber, Eric B.; Menninger, Holly L.; Morton, James M.; Henley, Jessica B.; Leff, Jonathan W.; Miller, Shelly L.; Fierer, Noah (2015). "The ecology of microscopic life in household dust". Proceedings of the Royal Society B: Biological Sciences. 282 (1814): 20151139. doi:10.1098/rspb.2015.1139. ISSN 0962-8452.
  9. ^ Dunn, Robert R.; Fierer, Noah; Henley, Jessica B.; Leff, Jonathan W.; Menninger, Holly L. (2013). "Home Life: Factors Structuring the Bacterial Diversity Found within and between Homes". PLoS ONE. 8 (5): e64133. doi:10.1371/journal.pone.0064133. ISSN 1932-6203.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  10. ^ a b Luongo, Julia C; Barberán, Albert; Hacker-Cary, Robin; Morgan, Emily E.; Miller, Shelly L; Fierer, Noah (2016). "Microbial analyses of airborne dust collected from dormitory rooms predict the sex of occupants". Indoor Air: n/a–n/a. doi:10.1111/ina.12302. ISSN 0905-6947.
  11. ^ Kembel, Steven W.; Meadow, James F.; O’Connor, Timothy K.; Mhuireach, Gwynne; Northcutt, Dale; Kline, Jeff; Moriyama, Maxwell; Brown, G. Z.; Bohannan, Brendan J. M.; Green, Jessica L. (2014). "Architectural Design Drives the Biogeography of Indoor Bacterial Communities". PLoS ONE. 9 (1): e87093. doi:10.1371/journal.pone.0087093. ISSN 1932-6203.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  12. ^ Chase, John; Fouquier, Jennifer; Zare, Mahnaz; Sonderegger, Derek L.; Knight, Rob; Kelley, Scott T.; Siegel, Jeffrey; Caporaso, J. Gregory; Gilbert, Jack A. (2016). "Geography and Location Are the Primary Drivers of Office Microbiome Composition". mSystems. 1 (2): e00022-16. doi:10.1128/mSystems.00022-16. ISSN 2379-5077.
  13. ^ Smith, Daniel; Alverdy, John; An, Gary; Coleman, Maureen; Garcia-Houchins, Sylvia; Green, Jessica; Keegan, Kevin; Kelley, Scott T.; Kirkup, Benjamin C.; Kociolek, Larry; Levin, Hal; Landon, Emily; Olsiewski, Paula; Knight, Rob; Siegel, Jeffrey; Weber, Stephen; Gilbert, Jack (2013). "The Hospital Microbiome Project: Meeting Report for the 1st Hospital Microbiome Project Workshop on sampling design and building science measurements, Chicago, USA, June 7th-8th 2012". Standards in Genomic Sciences. 8 (1): 112–117. doi:10.4056/sigs.3717348. ISSN 1944-3277.
  14. ^ Shogan, Benjamin D.; Smith, Daniel P.; Packman, Aaron I.; Kelley, Scott T.; Landon, Emily M; Bhangar, Seema; Vora, Gary J.; Jones, Rachael M.; Keegan, Kevin (2013-07-30). "The Hospital Microbiome Project: Meeting report for the 2nd Hospital Microbiome Project, Chicago, USA, January 15th, 2013". Standards in Genomic Sciences. 8 (3): 571–579. doi:10.4056/sigs.4187859. ISSN 1944-3277. PMC 3910697. PMID 24501640.
  15. ^ Westwood, Jack; Burnett, Matthew; Spratt, David; Ball, Michael; Wilson, Daniel J.; Wellsteed, Sally; Cleary, David; Green, Andy; Hutley, Emma (2014-01-01). "The hospital microbiome project: meeting report for the UK science and innovation network UK-USA workshop 'beating the superbugs: hospital microbiome studies for tackling antimicrobial resistance', October 14th 2013". Standards in Genomic Sciences. 9: 12. doi:10.1186/1944-3277-9-12. ISSN 1944-3277. PMC 4334475.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  16. ^ Saito, Yuhei; Yasuhara, Hiroshi; Murakoshi, Satoshi; Komatsu, Takami; Fukatsu, Kazuhiko; Uetera, Yushi (2015). "Time-dependent influence on assessment of contaminated environmental surfaces in operating rooms". American Journal of Infection Control. 43 (9): 951–955. doi:10.1016/j.ajic.2015.04.196. ISSN 0196-6553.
  17. ^ Alexander, J. Wesley; Van Sweringen, Heather; VanOss, Katherine; Hooker, Edmond A.; Edwards, Michael J. (2013). "Surveillance of Bacterial Colonization in Operating Rooms". Surgical Infections. 14 (4): 345–351. doi:10.1089/sur.2012.134. ISSN 1096-2964.
  18. ^ Suzuki, Asakatsu; Namba, Yoshimichi; Matsuura, Masaji; Horisawa, Akiko (2009). "Bacterial contamination of floors and other surfaces in operating rooms: a five-year survey". Journal of Hygiene. 93 (03): 559–566. doi:10.1017/S002217240006513X. ISSN 0022-1724.
  19. ^ Hartz, Lacey E.; Bradshaw, Wanda; Brandon, Debra H. "Potential NICU Environmental Influences on the Neonateʼs Microbiome". Advances in Neonatal Care. 15 (5): 324–335. doi:10.1097/anc.0000000000000220.
  20. ^ Meadow, James F; Altrichter, Adam E; Kembel, Steven W; Moriyama, Maxwell; O’Connor, Timothy K; Womack, Ann M; Brown, G Z; Green, Jessica L; Bohannan, Brendan J M (2014). "Bacterial communities on classroom surfaces vary with human contact". Microbiome. 2 (1): 7. doi:10.1186/2049-2618-2-7. ISSN 2049-2618.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  21. ^ Qian, J.; Hospodsky, D.; Yamamoto, N.; Nazaroff, W. W.; Peccia, J. (2012). "Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom". Indoor Air. 22 (4): 339–351. doi:10.1111/j.1600-0668.2012.00769.x. ISSN 0905-6947.
  22. ^ Leung, M. H. Y.; Wilkins, D.; Li, E. K. T.; Kong, F. K. F.; Lee, P. K. H. (2014). "Indoor-Air Microbiome in an Urban Subway Network: Diversity and Dynamics". Applied and Environmental Microbiology. 80 (21): 6760–6770. doi:10.1128/AEM.02244-14. ISSN 0099-2240.
  23. ^ a b Hsu, Tiffany; Joice, Regina; Vallarino, Jose; Abu-Ali, Galeb; Hartmann, Erica M.; Shafquat, Afrah; DuLong, Casey; Baranowski, Catherine; Gevers, Dirk; Green, Jessica L.; Morgan, Xochitl C.; Spengler, John D.; Huttenhower, Curtis; Knight, Rob (2016). "Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment". mSystems. 1 (3): e00018-16. doi:10.1128/mSystems.00018-16. ISSN 2379-5077.
  24. ^ Bokulich, Nicholas A.; Ohta, Moe; Richardson, Paul M.; Mills, David A. (2013). "Monitoring Seasonal Changes in Winery-Resident Microbiota". PLoS ONE. 8 (6): e66437. doi:10.1371/journal.pone.0066437. ISSN 1932-6203. {{cite journal}}: Missing |author1= (help)CS1 maint: unflagged free DOI (link)
  25. ^ Bokulich, N. A.; Mills, D. A. (2013). "Facility-Specific "House" Microbiome Drives Microbial Landscapes of Artisan Cheesemaking Plants". Applied and Environmental Microbiology. 79 (17): 5214–5223. doi:10.1128/AEM.00934-13. ISSN 0099-2240.
  26. ^ Calasso, Maria; Ercolini, Danilo; Mancini, Leonardo; Stellato, Giuseppina; Minervini, Fabio; Di Cagno, Raffaella; De Angelis, Maria; Gobbetti, Marco (2016). "Relationships among house, rind and core microbiotas during manufacture of traditional Italian cheeses at the same dairy plant". Food Microbiology. 54: 115–126. doi:10.1016/j.fm.2015.10.008. ISSN 0740-0020.
  27. ^ Bokulich, N. A.; Ohta, M.; Lee, M.; Mills, D. A. (2014). "Indigenous Bacteria and Fungi Drive Traditional Kimoto Sake Fermentations". Applied and Environmental Microbiology. 80 (17): 5522–5529. doi:10.1128/AEM.00663-14. ISSN 0099-2240.
  28. ^ Bokulich, Nicholas A; Bergsveinson, Jordyn; Ziola, Barry; Mills, David A (2015). "Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance". eLife. 4. doi:10.7554/eLife.04634. ISSN 2050-084X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  29. ^ Bokulich, Nicholas A; Lewis, Zachery T; Boundy-Mills, Kyria; Mills, David A (2016). "A new perspective on microbial landscapes within food production". Current Opinion in Biotechnology. 37: 182–189. doi:10.1016/j.copbio.2015.12.008. ISSN 0958-1669.
  30. ^ Van Bonn, William; LaPointe, Allen; Gibbons, Sean M.; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack (2015). "Aquarium microbiome response to ninety-percent system water change: Clues to microbiome management". Zoo Biology. 34 (4): 360–367. doi:10.1002/zoo.21220. ISSN 0733-3188.
  31. ^ Hayleeyesus, Samuel Fekadu; Manaye, Abayneh Melaku (2014). "Microbiological Quality of Indoor Air in University Libraries". Asian Pacific Journal of Tropical Biomedicine. 4: S312–S317. doi:10.12980/APJTB.4.2014C807. ISSN 2221-1691.
  32. ^ Mahnert, Alexander; Vaishampayan, Parag; Probst, Alexander J.; Auerbach, Anna; Moissl-Eichinger, Christine; Venkateswaran, Kasthuri; Berg, Gabriele (2015). "Cleanroom Maintenance Significantly Reduces Abundance but Not Diversity of Indoor Microbiomes". PLOS ONE. 10 (8): e0134848. doi:10.1371/journal.pone.0134848. ISSN 1932-6203.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  33. ^ Weinmaier, Thomas; Probst, Alexander J.; La Duc, Myron T.; Ciobanu, Doina; Cheng, Jan-Fang; Ivanova, Natalia; Rattei, Thomas; Vaishampayan, Parag (2015). "A viability-linked metagenomic analysis of cleanroom environments: eukarya, prokaryotes, and viruses". Microbiome. 3 (1). doi:10.1186/s40168-015-0129-y. ISSN 2049-2618.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  34. ^ Pehrsson, Erica C.; Tsukayama, Pablo; Patel, Sanket; Mejía-Bautista, Melissa; Sosa-Soto, Giordano; Navarrete, Karla M.; Calderon, Maritza; Cabrera, Lilia; Hoyos-Arango, William. "Interconnected microbiomes and resistomes in low-income human habitats". Nature. 533 (7602): 212–216. doi:10.1038/nature17672. PMC 4869995. PMID 27172044.
  35. ^ Korves, T. M.; Piceno, Y. M.; Tom, L. M.; DeSantis, T. Z.; Jones, B. W.; Andersen, G. L.; Hwang, G. M. (2013). "Bacterial communities in commercial aircraft high-efficiency particulate air (HEPA) filters assessed by PhyloChip analysis". Indoor Air. 23 (1): 50–61. doi:10.1111/j.1600-0668.2012.00787.x. ISSN 0905-6947.
  36. ^ Stephenson, Rachel E.; Gutierrez, Daniel; Peters, Cindy; Nichols, Mark; Boles, Blaise R. (2014). "Elucidation of bacteria found in car interiors and strategies to reduce the presence of potential pathogens". Biofouling. 30 (3): 337–346. doi:10.1080/08927014.2013.873418. ISSN 0892-7014.
  37. ^ Castro, V. A.; Thrasher, A. N.; Healy, M.; Ott, C. M.; Pierson, D. L. (2004). "Microbial Characterization during the Early Habitation of the International Space Station". Microbial Ecology. 47 (2): 119–126. doi:10.1007/s00248-003-1030-y. ISSN 0095-3628.
  38. ^ Novikova, N. D. (2004). "Review of the Knowledge of Microbial Contamination of the Russian Manned Spacecraft". Microbial Ecology. 47 (2): 127–132. doi:10.1007/s00248-003-1055-2. ISSN 0095-3628.
  39. ^ La Duc, Myron T.; Nicholson, Wayne; Kern, Roger; Venkateswaran, Kasthuri (2003). "Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility". Environmental Microbiology. 5 (10): 977–985. doi:10.1046/j.1462-2920.2003.00496.x. ISSN 1462-2912.
  40. ^ Moissl-Eichinger, Christine; Pukall, Rüdiger; Probst, Alexander J.; Stieglmeier, Michaela; Schwendner, Petra; Mora, Maximilian; Barczyk, Simon; Bohmeier, Maria; Rettberg, Petra (2013). "Lessons Learned from the Microbial Analysis of the Herschel Spacecraft during Assembly, Integration, and Test Operations". Astrobiology. 13 (12): 1125–1139. doi:10.1089/ast.2013.1024. ISSN 1531-1074.
  41. ^ Feazel, L. M.; Baumgartner, L. K.; Peterson, K. L.; Frank, D. N.; Harris, J. K.; Pace, N. R. (2009). "Opportunistic pathogens enriched in showerhead biofilms". Proceedings of the National Academy of Sciences. 106 (38): 16393–16399. doi:10.1073/pnas.0908446106. ISSN 0027-8424.
  42. ^ Sawabe, Toko; Suda, Wataru; Ohshima, Kenshiro; Hattori, Masahira; Sawabe, Tomoo (2016). "First microbiota assessments of children's paddling pool waters evaluated using 16S rRNA gene-based metagenome analysis". Journal of Infection and Public Health. 9 (3): 362–365. doi:10.1016/j.jiph.2015.11.008. ISSN 1876-0341.
  43. ^ Baron, Julianne L.; Harris, J. Kirk; Holinger, Eric P.; Duda, Scott; Stevens, Mark J.; Robertson, Charles E.; Ross, Kimberly A.; Pace, Norman R.; Stout, Janet E. (2015). "Effect of monochloramine treatment on the microbial ecology of Legionella and associated bacterial populations in a hospital hot water system". Systematic and Applied Microbiology. 38 (3): 198–205. doi:10.1016/j.syapm.2015.02.006. ISSN 0723-2020.
  44. ^ Pinto, Ameet J.; Xi, Chuanwu; Raskin, Lutgarde (2012). "Bacterial Community Structure in the Drinking Water Microbiome Is Governed by Filtration Processes". Environmental Science & Technology. 46 (16): 8851–8859. doi:10.1021/es302042t. ISSN 0013-936X.
  45. ^ Rudi, K.; Tannaes, T.; Vatn, M. (2009). "Temporal and Spatial Diversity of the Tap Water Microbiota in a Norwegian Hospital". Applied and Environmental Microbiology. 75 (24): 7855–7857. doi:10.1128/AEM.01174-09. ISSN 0099-2240.
  46. ^ Wang, Hong; Masters, Sheldon; Edwards, Marc A.; Falkinham, Joseph O.; Pruden, Amy (2014). "Effect of Disinfectant, Water Age, and Pipe Materials on Bacterial and Eukaryotic Community Structure in Drinking Water Biofilm". Environmental Science & Technology. 48 (3): 1426–1435. doi:10.1021/es402636u. ISSN 0013-936X.
  47. ^ Liu, G.; Verberk, J. Q. J. C.; Van Dijk, J. C. (2013). "Bacteriology of drinking water distribution systems: an integral and multidimensional review". Applied Microbiology and Biotechnology. 97 (21): 9265–9276. doi:10.1007/s00253-013-5217-y. ISSN 0175-7598.
  48. ^ Adams, Rachel I.; Bateman, Ashley C.; Bik, Holly M.; Meadow, James F. (2015). "Microbiota of the indoor environment: a meta-analysis". Microbiome. 3 (1). doi:10.1186/s40168-015-0108-3. ISSN 2049-2618.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  49. ^ Pakpour, Sepideh; Scott, James A.; Turvey, Stuart E.; Brook, Jeffrey R.; Takaro, Timothy K.; Sears, Malcolm R.; Klironomos, John (2016). "Presence of Archaea in the Indoor Environment and Their Relationships with Housing Characteristics". Microbial Ecology. 72 (2): 305–312. doi:10.1007/s00248-016-0767-z. ISSN 0095-3628.
  50. ^ Peccia, Jordan; Kwan, Sarah E. (2016). "Buildings, Beneficial Microbes, and Health". Trends in Microbiology. 24 (8): 595–597. doi:10.1016/j.tim.2016.04.007. ISSN 0966-842X.
  51. ^ Shin, Hakdong; Pei, Zhiheng; Martinez, Keith A.; Rivera-Vinas, Juana I.; Mendez, Keimari; Cavallin, Humberto; Dominguez-Bello, Maria G. (2015). "The first microbial environment of infants born by C-section: the operating room microbes". Microbiome. 3 (1). doi:10.1186/s40168-015-0126-1. ISSN 2049-2618.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  52. ^ Hartz, Lacey E.; Bradshaw, Wanda; Brandon, Debra H. "Potential NICU Environmental Influences on the Neonateʼs Microbiome". Advances in Neonatal Care. 15 (5): 324–335. doi:10.1097/anc.0000000000000220.
  53. ^ Casas, Lidia; Tischer, Christina; Täubel, Martin (2016). "Pediatric Asthma and the Indoor Microbial Environment". Current Environmental Health Reports. 3 (3): 238–249. doi:10.1007/s40572-016-0095-y. ISSN 2196-5412.
  54. ^ Fujimura, Kei E.; Lynch, Susan V. (2015). "Microbiota in Allergy and Asthma and the Emerging Relationship with the Gut Microbiome". Cell Host & Microbe. 17 (5): 592–602. doi:10.1016/j.chom.2015.04.007. ISSN 1931-3128.
  55. ^ Stein, Michelle M.; Hrusch, Cara L.; Gozdz, Justyna; Igartua, Catherine; Pivniouk, Vadim; Murray, Sean E.; Ledford, Julie G.; Santos, Mauricius Marques dos; Anderson, Rebecca L. (2016-08-03). "Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children". New England Journal of Medicine. 375 (5): 411–421. doi:10.1056/nejmoa1508749.
  56. ^ Birzele, Lena T.; Depner, Martin; Ege, Markus J.; Engel, Marion; Kublik, Susanne; Bernau, Christoph; Loss, Georg J.; Genuneit, Jon; Horak, Elisabeth (2016-08-01). "Environmental and mucosal microbiota and their role in childhood asthma". Allergy: n/a–n/a. doi:10.1111/all.13002. ISSN 1398-9995.
  57. ^ Fujimura, Kei E.; Demoor, Tine; Rauch, Marcus; Faruqi, Ali A.; Jang, Sihyug; Johnson, Christine C.; Boushey, Homer A.; Zoratti, Edward; Ownby, Dennis (2014-01-14). "House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection". Proceedings of the National Academy of Sciences of the United States of America. 111 (2): 805–810. doi:10.1073/pnas.1310750111. ISSN 1091-6490. PMC 3896155. PMID 24344318.
  58. ^ Hoisington, Andrew J.; Brenner, Lisa A.; Kinney, Kerry A.; Postolache, Teodor T.; Lowry, Christopher A. (2015). "The microbiome of the built environment and mental health". Microbiome. 3 (1). doi:10.1186/s40168-015-0127-0. ISSN 2049-2618.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  59. ^ "ASHRAE Position Document on Airborne Infectious Diseases" (PDF). ASHRAE. Retrieved August 20, 2016.
  60. ^ Fierer, N.; Lauber, C. L.; Zhou, N.; McDonald, D.; Costello, E. K.; Knight, R. (2010). "Forensic identification using skin bacterial communities". Proceedings of the National Academy of Sciences. 107 (14): 6477–6481. doi:10.1073/pnas.1000162107. ISSN 0027-8424.
  61. ^ Meadow, James F.; Altrichter, Adam E.; Green, Jessica L. (2014). "Mobile phones carry the personal microbiome of their owners". PeerJ. 2: e447. doi:10.7717/peerj.447. ISSN 2167-8359.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  62. ^ Carter, David O.; Metcalf, Jessica L.; Bibat, Alexander; Knight, Rob (2015). "Seasonal variation of postmortem microbial communities". Forensic Science, Medicine, and Pathology. 11 (2): 202–207. doi:10.1007/s12024-015-9667-7. ISSN 1547-769X.
  63. ^ Javan, Gulnaz T.; Finley, Sheree J.; Abidin, Zain; Mulle, Jennifer G. (2016-01-01). "The Thanatomicrobiome: A Missing Piece of the Microbial Puzzle of Death". Extreme Microbiology: 225. doi:10.3389/fmicb.2016.00225. PMC 4764706. PMID 26941736.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  64. ^ http://nas-sites.org/builtmicrobiome/about-the-study-2/
  65. ^ Glass, Elizabeth M.; Dribinsky, Yekaterina; Yilmaz, Pelin; Levin, Hal; Van Pelt, Robert; Wendel, Doug; Wilke, Andreas; Eisen, Jonathan A.; Huse, Sue (2014-01-01). "MIxS-BE: a MIxS extension defining a minimum information standard for sequence data from the built environment". The ISME Journal. 8 (1): 1–3. doi:10.1038/ismej.2013.176. ISSN 1751-7362. PMC 3869023. PMID 24152717.
  66. ^ Ramos, Tiffanie; Stephens, Brent (2014-11-01). "Tools to improve built environment data collection for indoor microbial ecology investigations". Building and Environment. 81: 243–257. doi:10.1016/j.buildenv.2014.07.004.
  67. ^ Hoisington, Andrew; Maestre, Juan P.; Siegel, Jeffrey A.; Kinney, Kerry A. (2014). "Exploring the microbiome of the built environment: A primer on four biological methods available to building professionals". HVAC&R Research. 20 (1): 167–175. doi:10.1080/10789669.2013.840524. ISSN 1078-9669.