Jump to content

Chloroflexia: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Sigpro47 (talk | contribs)
No edit summary
Line 6: Line 6:
| domain = [[Bacteria]]
| domain = [[Bacteria]]
| phylum = [[Chloroflexi (phylum)|Chloroflexi]]
| phylum = [[Chloroflexi (phylum)|Chloroflexi]]
| classis = '''Chloroflexi'''
| classis = '''Chloroflexia'''
| classis_authority = Garrity and Holt 2001
| classis_authority = Gupta et al. 2013
| subdivision_ranks = Orders
| subdivision_ranks = Orders & Suborders
| subdivision =[[Herpetosiphonales]]<br>
| subdivision =[[Herpetosiphonales]]<br>
[[Chloroflexales]]
[[Chloroflexales]]
*[[Chloroflexineae]]
*[[Roseiflexinae]]
| synonyms =
Chloroflexia <small>Castenholz 2001</small>
}}
}}


'''Chloroflexi''' is one of six classes of [[bacteria]] in the [[phylum]] [[Chloroflexi (phylum)|Chloroflexi]], known as filamentous '''green non-sulfur bacteria'''. They produce energy from light and are named for their green pigment, usually found in photosynthetic bodies called [[chlorosome]]s.
'''Chloroflexia''' is one of six classes of [[bacteria]] in the [[phylum]] [[Chloroflexi (phylum)|Chloroflexi]], known as filamentous ''green non-sulfur bacteria''. They produce energy from light and are named for their green pigment, usually found in photosynthetic bodies called [[chlorosome]]s.


Chloroflexi are typically filamentous, and can move about through [[bacterial gliding]]. They are facultatively [[aerobic organism|aerobic]], but do not produce oxygen in the process of producing energy from light, or [[phototrophy]]. Additionally Chloroflexi have a different method of phototrophy ([[photoheterotroph]]y) than true photosynthetic bacteria.
''Chloroflexia'' are typically filamentous, and can move about through [[bacterial gliding]]. They are facultatively [[aerobic organism|aerobic]], but do not produce oxygen in the process of producing energy from light, or [[phototrophy]]. Additionally, ''Chloroflexia'' have a different method of phototrophy ([[photoheterotroph]]y) than true [[photosynthesis in bacteria|photosynthetic bacteria]].


Whereas most bacteria, in terms of diversity<!--A few species of Firmicutes are very very common-->, are [[diderms]] and stain [[Gram negative]] with the exception of the ''[[Firmicutes]]'' (low GC Gram positives), ''[[Actinobacteria]]'' (high GC gram positives) and the Deinococcus-Thermus group (Gram positive, but diderms with thick peptidoglycan), the members of the phylum Chloroflexi are [[monoderm]]s and stain mostly Gram negative.<ref>{{Cite journal | last1 = Sutcliffe | first1 = I. C. | title = A phylum level perspective on bacterial cell envelope architecture | doi = 10.1016/j.tim.2010.06.005 | journal = Trends in Microbiology | volume = 18 | issue = 10 | pages = 464–470 | year = 2010 | pmid = 20637628| pmc = }}</ref>
Whereas most bacteria, in terms of diversity<!--A few species of Firmicutes are very very common-->, are [[diderms]] and stain [[Gram negative]] with the exception of the ''[[Firmicutes]]'' (low GC Gram positives), ''[[Actinobacteria]]'' (high GC gram positives) and the ''[[Deinococcus-Thermus]]'' group (Gram positive, but diderms with thick peptidoglycan), the members of the phylum ''[[Chloroflexi (phylum)|Chloroflexi]]'' are [[monoderm]]s and stain mostly [[Gram negative]].<ref>{{Cite journal | last1 = Sutcliffe | first1 = I. C. | title = A phylum level perspective on bacterial cell envelope architecture | doi = 10.1016/j.tim.2010.06.005 | journal = Trends in Microbiology | volume = 18 | issue = 10 | pages = 464–470 | year = 2010 | pmid = 20637628| pmc = }}</ref><ref name="pmid24535491">{{cite journal |vauthors= Campbell C, Sutcliffe IC, Gupta RS |title= Comparative proteome analysis of Acidaminococcus intestini supports a relationship between outer membrane biogenesis in Negativicutes and Proteobacteria |journal= Arch Microbiol |volume=196 |issue=4 |pages=307-310 |year=2014 |pmid=24535491 |doi=10.1007/s00203-014-0964-4|url=http://link.springer.com/article/10.1007%2Fs00203-014-0964-4}}</ref><ref name=pmid16228576>{{cite journal |vauthors=Gupta RS |title= Evolutionary relationships among photosynthetic bacteria |journal=Photosynth Res |volume=76|issue=1-3|pages=173-183 |date=2003|pmid=16228576 |doi=10.1023/A:1024999314839 |url=http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=linkout&SEARCH=16228576.ui}}</ref>



==Genomics==
==Taxonomy & Molecular Signatures==
{{see also|Genomics|Conserved signature indels}}
{{see also|Genomics|Conserved signature indels}}
The ''Chloroflexia'' class is a group of deep branching [[photosynthesis in bacteria|photosynthetic bacteria]] (with the exception of ''[[Herpetosiphon]]'' and ''[[Kallotenue]]'' species) that currently consist of three orders: ''[[Chloroflexales]]'', ''[[Herpetosiphonales]]'' and ''[[Kallotenuales]]''.<ref name=pmid22903492>{{cite journal |vauthors=Gupta RS, Chander P, George S |title=Phylogenetic framework and molecular signatures for the class Chloroflexia and its different clades; proposal for division of the class Chloroflexia class. nov. [corrected] into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. nov. |journal= Antonie Van Leeuwenhoek |volume=103|issue=1|pages=99-119 |date=2013|pmid=22903492 |doi=10.1007/s10482-012-9790-3 |url=http://link.springer.com/article/10.1007%2Fs10482-012-9790-3}}</ref><ref name=pmid23950149>{{cite journal |vauthors=Cole JK, Gieler BA, Heisler DL, Palisoc MM, Williams AJ, Dohnalkova AC, Ming H, Yu TT, Dodsworth JA, Li WJ, Hedlund BP |title=Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia |journal=Int J Syst Evol Microbiol |volume=63|issue=Pt 12|pages=4675-82|date=2013|pmid=23950149 |doi=10.1099/ijs.0.053348-0 |url=http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.053348-0#tab2}}</ref><ref name=pmid10361294>{{cite journal |vauthors=Gupta RS, Mukhtar T, Singh B |title=Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis |journal=Mol Microbiol |volume=32|issue=5|pages=893-906|date=1999|pmid=10361294|url= http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2958.1999.01417.x/abstract;jsessionid=D4E2ED5CC5E97F6E20DE0A8D476BF3A1.f04t02}}</ref><ref name=NCBI>{{cite web |author = Sayers| url=https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&id=32061&lvl=3&p=mapview&p=has_linkout&p=blast_url&p=genome_blast&srchmode=1&keep=1&unlock|title=Chloroflexia |publisher=[[National Center for Biotechnology Information]] (NCBI) taxonomy database |accessdate=2016-10-25 |display-authors=etal}}</ref><ref name=Euzeby>{{cite journal |vauthors=Euzeby J |title= List of new names and new combinations previously effectively, but not validly, published |journal=Int. J. Syst. Evol. Microbiol.|volume=63 |pages=1577-1580|date=2013 |doi=10.1099/ijs.0.052571-0|url= http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.052571-0}}</ref> The ''[[Herpetosiphonales]]'' and ''[[Kallotenuales]]'' each consist of a single genus within its own family, ''[[Herpetosiphonaceae]]'' (''[[Herpetosiphon]]'') and''[[ Kallotenuaceae]]'' (''[[Kallotenue]]''), respectively, whereas the ''[[Chloroflexales]]'' are more phylogenetically diverse.<ref name=pmid22903492/><ref name=pmid23950149/><ref name=NCBI/>
Comparative genomic analysis has recently refined the taxonomy of the class Chloroflexi, dividing the Chloroflexales into the suborder Chloroflexineae consisting of the family Oscillachloridaceae and the family Chloroflexaceae, and the suborder Roseiflexineae containing family Roseiflexaceae.<ref name=Gupta/> The revised taxonomy was based on the identification of a number of [[conserved signature indels]] (CSIs) which serve as highly reliable molecular markers of shared ancestry.<ref>{{Cite journal

Comparative genomic analysis has recently refined the taxonomy of the class ''Chloroflexia'', dividing the ''[[Chloroflexales]]'' into the suborder ''[[Chloroflexineae]]'' consisting of the family ''[[Oscillachloridaceae]]'' and the family ''[[Chloroflexaceae]]'', and the suborder ''[[Roseiflexineae]]'' containing family ''[[Roseiflexaceae]]''.<ref name=pmid22903492/> The revised taxonomy was based on the identification of a number of [[conserved signature indels]] (CSIs) which serve as highly reliable molecular markers of shared ancestry.<ref name=pmid27279642>{{cite journal |vauthors=Gupta RS |title=Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification |journal= FEMS Microbiol Rev |volume=40|issue=4|pages=520-53 |date=2016|pmid=27279642 |doi=10.1093/femsre/fuw011 |url=http://femsre.oxfordjournals.org/content/early/2016/06/07/femsre.fuw011.abstract}}</ref><ref>{{Cite journal
| last1 = Gupta | first1 = R. S.
| last1 = Gupta | first1 = R. S.
| title = Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes
| title = Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes
Line 53: Line 60:
| pmid = 12167362
| pmid = 12167362
| doi=10.1006/tpbi.2002.1589
| doi=10.1006/tpbi.2002.1589
}}</ref>
}}</ref> Comparative analyses of Chloroflexi genomes have identified 5 CSIs in different important proteins, such as [[GroES]] and [[Tryptophan synthase]], that are uniquely shared by all sequenced species/strains of the Chloroflexi class, but are not found in any other bacteria.<ref name=Gupta>{{Cite journal
Additional support for the division of ''[[Chloroflexales]]'' into two suborders is the observed differences in physiological characteristics where each suborder is characterized by distinct [[carotenoids]], [[quinones]] and [[fatty acid]] profiles that are consistently absent in the other suborder.<ref name=pmid22903492/><ref name=HP2006> Hanada S, Pierson BK (2006) The Family Chloroflexaceae. In: The prokaryotes: a handbook on the biology of bacteria, pp. 815-842. Eds Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E Springer-: New York.</ref><ref name=PC1992> Pierson BK, Castenholz RW (1992) The Family Chloroflexaceae. In: The prokaryotes, pp. 3754-3775. Eds Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH Springer-: New York.</ref> In addition to demarcating taxonomic ranks, [[conserved signature indels|CSIs]] have also been found that may play a role in the unique characteristics of members within the clade. In particular, a 4 aa insert in the protein pyruvate flavodoxin/ferredoxin oxidoreductase (PFOR), a protein which plays important roles in [[photosynthesis in bacteria|photosynthetic organisms]], has been found exclusively among all members in the ''[[Chloroflexus]]'' genus, and is thought to play an important functional role.<ref name=pmid20414806>{{cite journal |vauthors=Gupta RS |title=Molecular signatures for the main phyla of photosynthetic bacteria and their subgroups |journal=Photosynth Res |volume=104|pages=357-372|date=2010|pmid=20414806|doi=10.1007/s11120-010-9553-9 |url= http://link.springer.com/article/10.1007%2Fs11120-010-9553-9}}</ref><ref>{{Cite journal
| last1 = Gupta | first1 = R. S.
| last2 = Chander | first2 = P.
| last3 = George | first3 = S.
| doi = 10.1007/s10482-012-9790-3
| title = Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexi class. Nov. Into the suborder Chloroflexineae subord. Nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. Nov., and the suborder Roseiflexineae subord. Nov., containing the family Roseiflexaceae fam. Nov
| journal = Antonie van Leeuwenhoek
| year = 2012
| pmid = 22903492
| pmc =
| volume=103
| issue=1
| pages=99–119
}}</ref> Another 9 CSIs have been identified in a number of proteins, including important photosynthesis related proteins such as [[Magnesium chelatase]], that are specific for all or most of the species from the order Chloroflexales.<ref name=Gupta/> Within the Chloroflexales, 3 CSIs specific for Chloroflexaceae, 4 CSIs specific for Roseiflexaceae, and 7 CSIs specific for the suborder Chloroflexineae, which consists of Chloroflexaceae and Oscillochloridaceae have also been identified in various proteins.<ref name=Gupta/> Two of the CSIs uniquely found in the Chloroflexaceae family, a 4 aa insert in the protein pyruvate flavodoxin/ferredoxin oxidoreductase (PFOR) and a 2 aa insert in the protein magnesium-protoporphyrin IX monomethyl ester cyclase (ACSF), are located in proteins which play important roles in photosynthesis and are only found in photosynthetic organisms.<ref name=Gupta/><ref>{{Cite journal
| last1 = Stolz | first1 = F. M.
| last1 = Stolz | first1 = F. M.
| last2 = Hansmann | first2 = I.
| last2 = Hansmann | first2 = I.
Line 78: Line 73:
| pmc = 330654
| pmc = 330654
| doi=10.1093/nar/18.7.1929
| doi=10.1093/nar/18.7.1929
}}</ref> Additional work has been done using CSIs to demarcate the phylogenetic position of ''Chloroflexia'' relative to neighbouring photosynthetic groups such as the Cyanobacteria. <ref name=pmid27638319>{{cite journal |vauthors=Khadka B, Adeolu M, Blankenship RE, Gupta RS |title= Novel insights into the origin and diversification of photosynthesis based on analyses of conserved indels in the core reaction center proteins |journal=Photosynth Res |volume=Epub ahead of print |date=2016|pmid=27638319 |doi=10.1007/s11120-016-0307-1 |url=http://link.springer.com/article/10.1007%2Fs11120-016-0307-1}}</ref> ''Chloroflexia'' species form a distinct lineage with ''[[Chlorobi]]'' species, their closest phylogenetic relatives. A CSI has been found to be shared among both ''Chloroflexia'' and ''[[Chlorobi]]'' members, which has been interpreted as the result of a [[horizontal gene transfer]] event between the two relatives.<ref name=pmid22628531>{{cite journal |vauthors=Gupta RS |title= Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins |journal=Mol Biol Evol |volume=29 |issue=11|pages=3397-412|date=2012|pmid=22628531|doi=10.1093/molbev/mss145 |url=http://mbe.oxfordjournals.org/content/29/11/3397.long}} </ref>
}}</ref>



==Taxonomy==
==Taxonomy==
{{see also|Bacterial taxonomy}}
{{see also|Bacterial taxonomy}}
The currently accepted taxonomy is as follows:<ref name=Gupta/><ref name=lpsn>{{lpsn|classifphyla|Classification of Chloroflexi}}</ref>
The currently accepted taxonomy is as follows:<ref name=pmid22903492/><ref name=pmid23950149/><ref name=lpsn>{{lpsn|classifphyla|Classification of Chloroflexi}}</ref>
* Order [[Chloroflexales]]
* Order [[Chloroflexales]]
** Suborder [[Chloroflexineae]]
** Suborder [[Chloroflexineae]]
*** '''Family [[Chloroflexaceae]]''' <small>Trüper 1976 emend. Gupta et al. 2012</small>
*** '''Family [[Chloroflexaceae]]''' <small>Trüper 1976 emend. Gupta et al. 2013</small>
**** Genus ''[[Chloroflexus]]'' <small>Pierson and Castenholz 1974</small>
**** Genus ''[[Chloroflexus]]'' <small>Pierson and Castenholz 1974</small>
***** ''C. aggregans'' <small>Hanada et al. 1995</small>
***** ''C. aggregans'' <small>Hanada et al. 1995</small>
***** ''C. aurantiacus'' <small>Pierson and Castenholz 1974</small>
***** ''C. aurantiacus'' <small>Pierson and Castenholz 1974</small>
*** '''Family [[Oscillochloridaceae]]''' <small>Keppen 2000 emend. Gupta et al. 2012</small>
*** '''Family [[Oscillochloridaceae]]''' <small>Keppen 2000 emend. Gupta et al. 2013</small>
**** Genus ''[[Oscillochloris]]'' <small>Gorlenko and Pivovarova 1989 emend. Keppen et al. 2000</small>
**** Genus ''[[Oscillochloris]]'' <small>Gorlenko and Pivovarova 1989 emend. Keppen et al. 2000</small>
***** ''O. chrysea'' <small>Gorlenko and Pivovarova 1989</small>
***** ''O. chrysea'' <small>Gorlenko and Pivovarova 1989</small>
Line 96: Line 93:
***** ''Chloronema giganteum'' <small>Dubinina and Gorlenko 1975</small>
***** ''Chloronema giganteum'' <small>Dubinina and Gorlenko 1975</small>
** Suborder [[Roseiflexineae]]
** Suborder [[Roseiflexineae]]
*** '''Family [[Roseiflexaceae]]''' <small>Gupta et al. 2012</small>
*** '''Family [[Roseiflexaceae]]''' <small>Gupta et al. 2013</small>
**** Genus ''[[Roseiflexus]]'' <small>Hanada et al. 2002</small>
**** Genus ''[[Roseiflexus]]'' <small>Hanada et al. 2002</small>
***** ''Roseiflexus castenholzii'' <small>Hanada et al. 2002</small>
***** ''Roseiflexus castenholzii'' <small>Hanada et al. 2002</small>
Line 116: Line 113:


==References==
==References==
{{div col|2}}
{{reflist|1}}
{{reflist|1}}
{{div col end}}

==External links==
==External links==
* {{Taxonomic references|taxon=Chloroflexi}}
* {{Taxonomic references|taxon=Chloroflexi}}

Revision as of 21:38, 28 October 2016

Chloroflexi
Scientific classification
Domain:
Phylum:
Class:
Chloroflexia

Gupta et al. 2013
Orders & Suborders

Herpetosiphonales
Chloroflexales

Synonyms

Chloroflexia Castenholz 2001

Chloroflexia is one of six classes of bacteria in the phylum Chloroflexi, known as filamentous green non-sulfur bacteria. They produce energy from light and are named for their green pigment, usually found in photosynthetic bodies called chlorosomes.

Chloroflexia are typically filamentous, and can move about through bacterial gliding. They are facultatively aerobic, but do not produce oxygen in the process of producing energy from light, or phototrophy. Additionally, Chloroflexia have a different method of phototrophy (photoheterotrophy) than true photosynthetic bacteria.

Whereas most bacteria, in terms of diversity, are diderms and stain Gram negative with the exception of the Firmicutes (low GC Gram positives), Actinobacteria (high GC gram positives) and the Deinococcus-Thermus group (Gram positive, but diderms with thick peptidoglycan), the members of the phylum Chloroflexi are monoderms and stain mostly Gram negative.[1][2][3]


Taxonomy & Molecular Signatures

The Chloroflexia class is a group of deep branching photosynthetic bacteria (with the exception of Herpetosiphon and Kallotenue species) that currently consist of three orders: Chloroflexales, Herpetosiphonales and Kallotenuales.[4][5][6][7][8] The Herpetosiphonales and Kallotenuales each consist of a single genus within its own family, Herpetosiphonaceae (Herpetosiphon) andKallotenuaceae (Kallotenue), respectively, whereas the Chloroflexales are more phylogenetically diverse.[4][5][7]

Comparative genomic analysis has recently refined the taxonomy of the class Chloroflexia, dividing the Chloroflexales into the suborder Chloroflexineae consisting of the family Oscillachloridaceae and the family Chloroflexaceae, and the suborder Roseiflexineae containing family Roseiflexaceae.[4] The revised taxonomy was based on the identification of a number of conserved signature indels (CSIs) which serve as highly reliable molecular markers of shared ancestry.[9][10][11][12] Additional support for the division of Chloroflexales into two suborders is the observed differences in physiological characteristics where each suborder is characterized by distinct carotenoids, quinones and fatty acid profiles that are consistently absent in the other suborder.[4][13][14] In addition to demarcating taxonomic ranks, CSIs have also been found that may play a role in the unique characteristics of members within the clade. In particular, a 4 aa insert in the protein pyruvate flavodoxin/ferredoxin oxidoreductase (PFOR), a protein which plays important roles in photosynthetic organisms, has been found exclusively among all members in the Chloroflexus genus, and is thought to play an important functional role.[15][16] Additional work has been done using CSIs to demarcate the phylogenetic position of Chloroflexia relative to neighbouring photosynthetic groups such as the Cyanobacteria. [17] Chloroflexia species form a distinct lineage with Chlorobi species, their closest phylogenetic relatives. A CSI has been found to be shared among both Chloroflexia and Chlorobi members, which has been interpreted as the result of a horizontal gene transfer event between the two relatives.[18]


Taxonomy

The currently accepted taxonomy is as follows:[4][5][19]

Additionally, there are "Kouleothrix aurantiaca" and "Dehalobium chlorocoercia" which have not been fully described.

Etymology

The name "Chloroflexi" is a Neolatin nominative case masculine plural of "Chloroflexus", which the name of the first genus described. The noun is a combination of the Greek adjective chloros, -a, on (χλωρός, -ά, -όν)[20] meaning "greenish-yellow" and the Latin masculine passive perfect participle flexus (of flecto)[21] meaning "bent" to mean "a green bending".[22] It should be therefore noted that the etymology is not due to chlorine, an element (dephlogisticated muriatic acid air) which was confirmed as such in 1810 by Sir Humphry Davy and named after its pale green colour.

Further reading

  • Garrity GM, Holt JG (2001). "Phylum BVI. Chloroflexi phy. nov". Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the deeply branching and phototrophic Bacteria (2nd ed.). New York: Springer Verlag. p. 169. ISBN 978-0-387-98771-2. {{cite book}}: Unknown parameter |editors= ignored (|editor= suggested) (help)

References

  1. ^ Sutcliffe, I. C. (2010). "A phylum level perspective on bacterial cell envelope architecture". Trends in Microbiology. 18 (10): 464–470. doi:10.1016/j.tim.2010.06.005. PMID 20637628.
  2. ^ Campbell C, Sutcliffe IC, Gupta RS (2014). "Comparative proteome analysis of Acidaminococcus intestini supports a relationship between outer membrane biogenesis in Negativicutes and Proteobacteria". Arch Microbiol. 196 (4): 307–310. doi:10.1007/s00203-014-0964-4. PMID 24535491.
  3. ^ Gupta RS (2003). "Evolutionary relationships among photosynthetic bacteria". Photosynth Res. 76 (1–3): 173–183. doi:10.1023/A:1024999314839. PMID 16228576.
  4. ^ a b c d e Gupta RS, Chander P, George S (2013). "Phylogenetic framework and molecular signatures for the class Chloroflexia and its different clades; proposal for division of the class Chloroflexia class. nov. [corrected] into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. nov". Antonie Van Leeuwenhoek. 103 (1): 99–119. doi:10.1007/s10482-012-9790-3. PMID 22903492.
  5. ^ a b c Cole JK, Gieler BA, Heisler DL, Palisoc MM, Williams AJ, Dohnalkova AC, Ming H, Yu TT, Dodsworth JA, Li WJ, Hedlund BP (2013). "Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia". Int J Syst Evol Microbiol. 63 (Pt 12): 4675–82. doi:10.1099/ijs.0.053348-0. PMID 23950149.
  6. ^ Gupta RS, Mukhtar T, Singh B (1999). "Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis". Mol Microbiol. 32 (5): 893–906. PMID 10361294.
  7. ^ a b Sayers; et al. "Chloroflexia". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2016-10-25.
  8. ^ Euzeby J (2013). "List of new names and new combinations previously effectively, but not validly, published". Int. J. Syst. Evol. Microbiol. 63: 1577–1580. doi:10.1099/ijs.0.052571-0.
  9. ^ Gupta RS (2016). "Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification". FEMS Microbiol Rev. 40 (4): 520–53. doi:10.1093/femsre/fuw011. PMID 27279642.
  10. ^ Gupta, R. S. (1998). "Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes". Microbiology and molecular biology reviews : MMBR. 62 (4): 1435–1491. PMC 98952. PMID 9841678.
  11. ^ Rokas, A.; Holland, P. W. (2000). "Rare genomic changes as a tool for phylogenetics". Trends in Ecology & Evolution. 15 (11): 454–459. doi:10.1016/S0169-5347(00)01967-4. PMID 11050348.
  12. ^ Gupta, R. S.; Griffiths, E. (2002). "Critical issues in bacterial phylogeny". Theoretical population biology. 61 (4): 423–434. doi:10.1006/tpbi.2002.1589. PMID 12167362.
  13. ^ Hanada S, Pierson BK (2006) The Family Chloroflexaceae. In: The prokaryotes: a handbook on the biology of bacteria, pp. 815-842. Eds Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E Springer-: New York.
  14. ^ Pierson BK, Castenholz RW (1992) The Family Chloroflexaceae. In: The prokaryotes, pp. 3754-3775. Eds Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH Springer-: New York.
  15. ^ Gupta RS (2010). "Molecular signatures for the main phyla of photosynthetic bacteria and their subgroups". Photosynth Res. 104: 357–372. doi:10.1007/s11120-010-9553-9. PMID 20414806.
  16. ^ Stolz, F. M.; Hansmann, I. (1990). "An MspI RFLP detected by probe pFMS76 D20S23 isolated from a flow-sorted chromosome 20-specific DNA library". Nucleic Acids Research. 18 (7): 1929. doi:10.1093/nar/18.7.1929. PMC 330654. PMID 1692410.
  17. ^ Khadka B, Adeolu M, Blankenship RE, Gupta RS (2016). "Novel insights into the origin and diversification of photosynthesis based on analyses of conserved indels in the core reaction center proteins". Photosynth Res. Epub ahead of print. doi:10.1007/s11120-016-0307-1. PMID 27638319.
  18. ^ Gupta RS (2012). "Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins". Mol Biol Evol. 29 (11): 3397–412. doi:10.1093/molbev/mss145. PMID 22628531.
  19. ^ Classification of Chloroflexi in LPSN; Parte, Aidan C.; Sardà Carbasse, Joaquim; Meier-Kolthoff, Jan P.; Reimer, Lorenz C.; Göker, Markus (1 November 2020). "List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ". International Journal of Systematic and Evolutionary Microbiology. 70 (11): 5607–5612. doi:10.1099/ijsem.0.004332.
  20. ^ χλωρός. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  21. ^ Lewis, Charlton T. and Charles Short, A Latin Dictionary. Oxford: Clarendon Press, 1879. Online version at Perseus
  22. ^ Don J. Brenner; Noel R. Krieg; James T. Staley (July 26, 2005) [1984(Williams & Wilkins)]. George M. Garrity (ed.). Introductory Essays. Bergey's Manual of Systematic Bacteriology. Vol. 2A (2nd ed.). New York: Springer. p. 304. ISBN 978-0-387-24143-2. British Library no. GBA561951.

External links

External links