Jump to content

NDUFAF2: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Created page, added categories (Introduction, Structure, Function, Clinical Significance, and Interactions) references, and semantic linkages.
(No difference)

Revision as of 22:18, 23 July 2018

NADH:ubiquinone oxidoreductase complex assembly factor 2 (NDUFAF2), also known as B17.2L or NDUFA12L is a protein that in humans is encoded by the NDUFAF2, or B17.2L, gene. The NDUFAF2 protein is a chaperone involved in the assembly of NADH dehydrogenase (ubiquinone) also known as complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain.[1][2] Mutations in this gene have been associated with progressive encephalopathy and Leigh disease resulting from mitochondrial complex I deficiency.[3]

Structure

NDUFAF2 is located on the q arm of chromosome 5 in position 12.1.[3] The NDUFAF2 gene produces a 20 kDa protein composed of 169 amino acids.[4][5] The protein is a chaperone of the complex I NDUFA12 subunit family.[6][7]

Function

NADH:ubiquinone oxidoreductase (complex I) catalyzes the transfer of electrons from NADH to ubiquinone (coenzyme Q) in the first step of the mitochondrial respiratory chain, resulting in the translocation of protons across the inner mitochondrial membrane. The NDUFAF2 gene encodes a complex I assembly factor, B17.2L, that is important for the correct function of the mitochondrial respiratory chain. [3] Specifically, B17.2L acts as a molecular chaperone, associating with an 830 kDa subassembly in the late stages of complex I assembly.[2]

Clinical Significance

Mutations in NDUFAF2 have been associated with complex I deficiency and mitochondrial diseases. These disorders are a result of the dysfunction of the mitochondrial respiratory chain and can cause a wide range of clinical manifestations from lethal neonatal disease to adult-onset neurodegenerative disorders. Phenotypes include macrocephaly with progressive leukodystrophy, non-specific encephalopathy, cardiomyopathy, myopathy, liver disease, Leigh syndrome, Leber hereditary optic neuropathy, and some forms of Parkinson disease.[6][7] Clinically, NDUFAF2 mutations have been associated with progressive encephalopathy[2] and Leigh disease.[8][9]

Progressive encephalopathy was diagnosed in a female patient with a homozygous C182T mutation in exon 2 of B17.2L. This patient presented at 12-14 months with horizontal nystagmus and wide-based gait. Signs and symptoms included ataxia, lethargy and weakness, muscle wasting, optic atrophy, lactic acidosis, absent deep tendon reflexes, hypertrophic cardiomyopathy, hypertension, tachycardia, hypotonia, dysphagia, severe osteoporosis, scoliosis, elevated T4 and TSH, cerebral lesions and atrophy (especially in the thalamus and hypothalamus), severe axonal sensorimotor polyneuropathy, extensive myelomalacia, and white matter encephalomalacia. The patient died at 13 years of age.[2] In another case, a male patient had a diagnosis of Leigh disease with a homozygous nonsense mutation c.9G>A at position 3 of NDUFAF2. Signs and symptoms included delayed psychomotor development, nystagmus, bilateral positive Babinski signs, elevated lactate, pale optic discs, brainstem necrosis, and lesions of the spinal cord, medulla oblongata, midbrain, and white matter. The patient was found to be apnoeic, cyanotic and comatose and eventually died from cardiorespiratory arrest at 27 months of age.[8] In another diagnosis of Leigh syndrome, a female patient was found to have a nonsense mutation in NDUFAF2 was found. Signs and symptoms included nystagmus, developmental retardation, renal tubular acidosis, hypotonia, elevated lactate, dyskinetic movements, and abnormal cerebral signaling. The patient developed respiratory alkalosis and, at 1 year of age, died due to respiratory failure.[9] Another case described two patients with mutations in NDUFA12L, who had hypotonia, nystagmus, ataxia, and encephalopathy, which resulted in early death.[10] It has also been suggested that neurometabolic deficiencies due to disruptions in NDUFAF2 can result in an ADHD phenotype.[11]

Interactions

In addition to co-complexes, NDUFAF2 has protein-protein interactions with CYB5B,[12] LAT,[13] SEC22B,[14] TMEM97,[15] TMEM201,[16] SPG21,[17] LPAR3,[18] STX8,[19] and OPTN.[20]

References

  1. ^ Donald Voet; Judith G. Voet; Charlotte W. Pratt (2013). "18". Fundamentals of biochemistry : life at the molecular level (4th ed.). Hoboken, NJ: Wiley. pp. 581–620. ISBN 9780470547847.
  2. ^ a b c d Ogilvie, Isla; Kennaway, Nancy G.; Shoubridge, Eric A. (2005-10). "A molecular chaperone for mitochondrial complex I assembly is mutated in a progressive encephalopathy". The Journal of Clinical Investigation. 115 (10): 2784–2792. doi:10.1172/JCI26020. ISSN 0021-9738. PMC 1236688. PMID 16200211. {{cite journal}}: Check date values in: |date= (help)CS1 maint: PMC format (link)
  3. ^ a b c "Entrez Gene: NADH:ubiquinone oxidoreductase complex assembly factor 2". Retrieved 2018-07-23.
  4. ^ Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC 4076475. PMID 23965338.
  5. ^ Yao, Daniel. "Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) —— Protein Information". amino.heartproteome.org. Retrieved 2018-07-23.
  6. ^ a b "NDUFAF2 - NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 2 precursor - Homo sapiens (Human) - NDUFAF2 gene & protein". www.uniprot.org. Retrieved 2018-07-23.
  7. ^ a b "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. 2016-11-29. doi:10.1093/nar/gkw1099. ISSN 0305-1048. PMC 5210571. PMID 27899622.{{cite journal}}: CS1 maint: PMC format (link)
  8. ^ a b Herzer, M.; Koch, J.; Prokisch, H.; Rodenburg, R.; Rauscher, C.; Radauer, W.; Forstner, R.; Pilz, P.; Rolinski, B. (2010-2). "Leigh disease with brainstem involvement in complex I deficiency due to assembly factor NDUFAF2 defect". Neuropediatrics. 41 (1): 30–34. doi:10.1055/s-0030-1255062. ISSN 1439-1899. PMID 20571988. {{cite journal}}: Check date values in: |date= (help)
  9. ^ a b Hoefs, Saskia J. G.; Dieteren, Cindy E. J.; Rodenburg, Richard J.; Naess, Karin; Bruhn, Helene; Wibom, Rolf; Wagena, Esther; Willems, Peter H.; Smeitink, Jan A. M. (2009-7). "Baculovirus complementation restores a novel NDUFAF2 mutation causing complex I deficiency". Human Mutation. 30 (7): E728–736. doi:10.1002/humu.21037. ISSN 1098-1004. PMID 19384974. {{cite journal}}: Check date values in: |date= (help)
  10. ^ Barghuti, Flora; Elian, Khaled; Gomori, John Moshe; Shaag, Avraham; Edvardson, Simon; Saada, Ann; Elpeleg, Orly (2008-5). "The unique neuroradiology of complex I deficiency due to NDUFA12L defect". Molecular Genetics and Metabolism. 94 (1): 78–82. doi:10.1016/j.ymgme.2007.11.013. ISSN 1096-7206. PMID 18180188. {{cite journal}}: Check date values in: |date= (help)
  11. ^ Lesch, K.-P.; Selch, S.; Renner, T. J.; Jacob, C.; Nguyen, T. T.; Hahn, T.; Romanos, M.; Walitza, S.; Shoichet, S. (2011-5). "Genome-wide copy number variation analysis in attention-deficit/hyperactivity disorder: association with neuropeptide Y gene dosage in an extended pedigree". Molecular Psychiatry. 16 (5): 491–503. doi:10.1038/mp.2010.29. ISSN 1476-5578. PMID 20308990. {{cite journal}}: Check date values in: |date= (help)
  12. ^ IntAct. "https://www.ebi.ac.uk/intact/interaction/EBI-20135518?conversationContext=2&kmr=true". www.ebi.ac.uk. Retrieved 2018-07-23. {{cite web}}: External link in |title= (help)
  13. ^ IntAct. "https://www.ebi.ac.uk/intact/interaction/EBI-20135570?conversationContext=2&kmr=true". www.ebi.ac.uk. Retrieved 2018-07-23. {{cite web}}: External link in |title= (help)
  14. ^ IntAct. "https://www.ebi.ac.uk/intact/interaction/EBI-20135544?conversationContext=2&kmr=true". www.ebi.ac.uk. Retrieved 2018-07-23. {{cite web}}: External link in |title= (help)
  15. ^ IntAct. "https://www.ebi.ac.uk/intact/interaction/EBI-20135674?conversationContext=2&kmr=true". www.ebi.ac.uk. Retrieved 2018-07-23. {{cite web}}: External link in |title= (help)
  16. ^ IntAct. "https://www.ebi.ac.uk/intact/interaction/EBI-20135622?conversationContext=2&kmr=true". www.ebi.ac.uk. Retrieved 2018-07-23. {{cite web}}: External link in |title= (help)
  17. ^ IntAct. "https://www.ebi.ac.uk/intact/interaction/EBI-20135492?conversationContext=2&kmr=true". www.ebi.ac.uk. Retrieved 2018-07-23. {{cite web}}: External link in |title= (help)
  18. ^ IntAct. "https://www.ebi.ac.uk/intact/interaction/EBI-20135596?conversationContext=2&kmr=true". www.ebi.ac.uk. Retrieved 2018-07-23. {{cite web}}: External link in |title= (help)
  19. ^ IntAct. "https://www.ebi.ac.uk/intact/interaction/EBI-20135466?conversationContext=2&kmr=true". www.ebi.ac.uk. Retrieved 2018-07-23. {{cite web}}: External link in |title= (help)
  20. ^ IntAct. "https://www.ebi.ac.uk/intact/interaction/EBI-2682370?conversationContext=2&kmr=true". www.ebi.ac.uk. Retrieved 2018-07-23. {{cite web}}: External link in |title= (help)

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.