CRLF3: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Adding details regarding function and origin of CRLF3
consistent citation formatting
Line 2: Line 2:
'''Cytokine receptor-like factor 3''' is a [[protein]] that in humans is encoded by the ''CRLF3'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: cytokine receptor-like factor 3| url = https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&list_uids=51379 }}</ref>
'''Cytokine receptor-like factor 3''' is a [[protein]] that in humans is encoded by the ''CRLF3'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: cytokine receptor-like factor 3| url = https://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=retrieve&list_uids=51379 }}</ref>


==Model organisms==
== Model organisms ==

{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: right;" |
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: right;" |
|+ ''Crlf3'' knockout mouse phenotype
|+ ''Crlf3'' knockout mouse phenotype
Line 63: Line 64:
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal| doi = 10.1111/j.1755-3768.2010.4142.x| title = The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice| year = 2010| author = Gerdin AK| journal = Acta Ophthalmologica| volume = 88| issue = S248 }}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal| doi = 10.1111/j.1755-3768.2010.4142.x| title = The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice| year = 2010| author = Gerdin AK| journal = Acta Ophthalmologica| volume = 88| issue = S248 }}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
|}
|}
[[Model organism]]s have been used in the study of CRLF3 function. A conditional [[knockout mouse]] line, called ''Crlf3<sup>tm1a(KOMP)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Crlf3 |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4363171 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program, a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.<ref name="pmid21677750">{{Cite journal
[[Model organism]]s have been used in the study of CRLF3 function. A conditional [[knockout mouse]] line, called ''Crlf3<sup>tm1a(KOMP)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Crlf3 |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4363171 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program, a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.<ref name="pmid21677750">{{cite journal | vauthors = Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A | display-authors = 6 | title = A conditional knockout resource for the genome-wide study of mouse gene function | journal = Nature | volume = 474 | issue = 7351 | pages = 337–42 | date = June 2011 | pmid = 21677750 | pmc = 3572410 | doi = 10.1038/nature10163 }}</ref><ref name="mouse_library">{{cite journal | vauthors = Dolgin E | title = Mouse library set to be knockout | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | date = June 2011 | pmid = 21677718 | doi = 10.1038/474262a }}</ref><ref name="mouse_for_all_reasons">{{cite journal | vauthors = Collins FS, Rossant J, Wurst W | title = A mouse for all reasons | journal = Cell | volume = 128 | issue = 1 | pages = 9–13 | date = January 2007 | pmid = 17218247 | doi = 10.1016/j.cell.2006.12.018 }}</ref> Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal | vauthors = van der Weyden L, White JK, Adams DJ, Logan DW | title = The mouse genetics toolkit: revealing function and mechanism | journal = Genome Biology | volume = 12 | issue = 6 | pages = 224 | date = June 2011 | pmid = 21722353 | pmc = 3218837 | doi = 10.1186/gb-2011-12-6-224 }}</ref> Twenty six tests were carried out and two significant [[phenotype]]s were reported. [[Homozygous]] [[mutant]] female adults had a significant increase in circulating levels of [[fructosamine]], while mutants of both sexes had decreased [[platelet]] cell numbers.<ref name="mgp_reference" />
| last1 = Skarnes |first1 =W. C.
| doi = 10.1038/nature10163
| last2 = Rosen | first2 = B.
| last3 = West | first3 = A. P.
| last4 = Koutsourakis | first4 = M.
| last5 = Bushell | first5 = W.
| last6 = Iyer | first6 = V.
| last7 = Mujica | first7 = A. O.
| last8 = Thomas | first8 = M.
| last9 = Harrow | first9 = J.
| last10 = Cox | first10 = T.
| last11 = Jackson | first11 = D.
| last12 = Severin | first12 = J.
| last13 = Biggs | first13 = P.
| last14 = Fu | first14 = J.
| last15 = Nefedov | first15 = M.
| last16 = De Jong | first16 = P. J.
| last17 = Stewart | first17 = A. F.
| last18 = Bradley | first18 = A.
| title = A conditional knockout resource for the genome-wide study of mouse gene function
| journal = Nature
| volume = 474
| issue = 7351
| pages = 337–342
| year = 2011
| pmid = 21677750
| pmc =3572410
}}</ref><ref name="mouse_library">{{cite journal |author=Dolgin E |title=Mouse library set to be knockout |journal=Nature |volume=474 |issue=7351 |pages=262–3 |date=June 2011 |pmid=21677718 |doi=10.1038/474262a }}</ref><ref name="mouse_for_all_reasons">{{cite journal |vauthors=Collins FS, Rossant J, Wurst W |title=A mouse for all reasons |journal=Cell |volume=128 |issue=1 |pages=9–13 |date=January 2007 |pmid=17218247 |doi=10.1016/j.cell.2006.12.018 }}</ref> Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal|vauthors=van der Weyden L, White JK, Adams DJ, Logan DW | title=The mouse genetics toolkit: revealing function and mechanism. | journal=Genome Biol | year= 2011 | volume= 12 | issue= 6 | pages= 224 | pmid=21722353 | doi=10.1186/gb-2011-12-6-224 | pmc=3218837}}</ref> Twenty six tests were carried out and two significant [[phenotype]]s were reported. [[Homozygous]] [[mutant]] female adults had a significant increase in circulating levels of [[fructosamine]], while mutants of both sexes had decreased [[platelet]] cell numbers.<ref name="mgp_reference" />


== Function ==
== Function ==
Although CRLF3 signaling pathways have not yet been fully investigated it is very likely that CRLF3 is a neuroprotective [[erythropoietin]] receptor<ref>{{Cite journal|last=Hahn|first=Nina|last2=Knorr|first2=Debbra Y.|last3=Liebig|first3=Johannes|last4=Wüstefeld|first4=Liane|last5=Peters|first5=Karsten|last6=Büscher|first6=Marita|last7=Bucher|first7=Gregor|last8=Ehrenreich|first8=Hannelore|last9=Heinrich|first9=Ralf|date=2017|title=The Insect Ortholog of the Human Orphan Cytokine Receptor CRLF3 Is a Neuroprotective Erythropoietin Receptor|url=https://www.frontiersin.org/articles/10.3389/fnmol.2017.00223/full|journal=Frontiers in Molecular Neuroscience|language=English|volume=10|doi=10.3389/fnmol.2017.00223|issn=1662-5099|pmc=PMC5509957|pmid=28769759}}</ref>.
Although CRLF3 signaling pathways have not yet been fully investigated it is very likely that CRLF3 is a neuroprotective [[erythropoietin]] receptor<ref>{{cite journal | vauthors = Hahn N, Knorr DY, Liebig J, Wüstefeld L, Peters K, Büscher M, Bucher G, Ehrenreich H, Heinrich R | display-authors = 6 | title = The Insect Ortholog of the Human Orphan Cytokine Receptor CRLF3 Is a Neuroprotective Erythropoietin Receptor | language = English | journal = Frontiers in Molecular Neuroscience | volume = 10 | pages = 223 | date = 2017 | pmid = 28769759 | pmc = 5509957 | doi = 10.3389/fnmol.2017.00223 }}</ref>.


== Origin ==
== Origin ==
Phylogenetic analyses have shown that CRLF3 at first appeared in a common ancestor of [[Cnidaria]] and [[Bilateria]] and hence emerged with the origin of the nervous system<ref>{{Cite journal|last=Hahn|first=Nina|last2=Büschgens|first2=Luca|last3=Schwedhelm-Domeyer|first3=Nicola|last4=Bank|first4=Sarah|last5=Geurten|first5=Bart R. H.|last6=Neugebauer|first6=Pia|last7=Massih|first7=Bita|last8=Göpfert|first8=Martin C.|last9=Heinrich|first9=Ralf|date=2019|title=The Orphan Cytokine Receptor CRLF3 Emerged With the Origin of the Nervous System and Is a Neuroprotective Erythropoietin Receptor in Locusts|url=https://www.frontiersin.org/articles/10.3389/fnmol.2019.00251/full|journal=Frontiers in Molecular Neuroscience|language=English|volume=12|doi=10.3389/fnmol.2019.00251|issn=1662-5099}}</ref>.
Phylogenetic analyses have shown that CRLF3 at first appeared in a common ancestor of [[Cnidaria]] and [[Bilateria]] and hence emerged with the origin of the nervous system<ref>{{Cite journal|last=Hahn|first=Nina|last2=Büschgens|first2=Luca|last3=Schwedhelm-Domeyer|first3=Nicola|last4=Bank|first4=Sarah|last5=Geurten|first5=Bart R. H.|last6=Neugebauer|first6=Pia|last7=Massih|first7=Bita|last8=Göpfert|first8=Martin C.|last9=Heinrich|first9=Ralf|date=2019|title=The Orphan Cytokine Receptor CRLF3 Emerged With the Origin of the Nervous System and Is a Neuroprotective Erythropoietin Receptor in Locusts|journal=Frontiers in Molecular Neuroscience|language=English|volume=12|doi=10.3389/fnmol.2019.00251|issn=1662-5099}}</ref>.


==References==
== References ==
{{reflist}}
{{reflist}}


==External links==
== External links ==
* {{UCSC gene info|CRLF3}}
* {{UCSC gene info|CRLF3}}


==Further reading ==
==Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
*{{cite journal |vauthors=Visser R, Koelma N, Vijfhuizen L |title=RNF135 mutations are not present in patients with Sotos syndrome-like features. |journal=Am. J. Med. Genet. A |volume=149A |issue= 4 |pages= 806–8 |year= 2009 |pmid= 19291764 |doi= 10.1002/ajmg.a.32694 |display-authors=etal}}
* {{cite journal | vauthors = Visser R, Koelma N, Vijfhuizen L, van der Wielen MJ, Kant SG, Breuning MH, Wit JM, Losekoot M | display-authors = 6 | title = RNF135 mutations are not present in patients with Sotos syndrome-like features | journal = American Journal of Medical Genetics. Part A | volume = 149A | issue = 4 | pages = 806–8 | date = February 2009 | pmid = 19291764 | doi = 10.1002/ajmg.a.32694 }}
*{{cite journal |vauthors=Gudbjartsson DF, Walters GB, Thorleifsson G |title=Many sequence variants affecting diversity of adult human height. |journal=Nat. Genet. |volume=40 |issue= 5 |pages= 609–15 |year= 2008 |pmid= 18391951 |doi= 10.1038/ng.122 |display-authors=etal}}
* {{cite journal | vauthors = Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV, Zusmanovich P, Sulem P, Thorlacius S, Gylfason A, Steinberg S, Helgadottir A, Ingason A, Steinthorsdottir V, Olafsdottir EJ, Olafsdottir GH, Jonsson T, Borch-Johnsen K, Hansen T, Andersen G, Jorgensen T, Pedersen O, Aben KK, Witjes JA, Swinkels DW, den Heijer M, Franke B, Verbeek AL, Becker DM, Yanek LR, Becker LC, Tryggvadottir L, Rafnar T, Gulcher J, Kiemeney LA, Kong A, Thorsteinsdottir U, Stefansson K | display-authors = 6 | title = Many sequence variants affecting diversity of adult human height | journal = Nature Genetics | volume = 40 | issue = 5 | pages = 609–15 | date = May 2008 | pmid = 18391951 | doi = 10.1038/ng.122 }}
*{{cite journal |vauthors=Zhao J, Li M, Bradfield JP |title=The role of height-associated loci identified in genome wide association studies in the determination of pediatric stature. |journal=BMC Med. Genet. |volume=11 |issue= |pages= 96 |year= 2010 |pmid= 20546612 |doi= 10.1186/1471-2350-11-96 |pmc=2894790|display-authors=etal}}
* {{cite journal | vauthors = Zhao J, Li M, Bradfield JP, Zhang H, Mentch FD, Wang K, Sleiman PM, Kim CE, Glessner JT, Hou C, Keating BJ, Thomas KA, Garris ML, Deliard S, Frackelton EC, Otieno FG, Chiavacci RM, Berkowitz RI, Hakonarson H, Grant SF | display-authors = 6 | title = The role of height-associated loci identified in genome wide association studies in the determination of pediatric stature | journal = BMC Medical Genetics | volume = 11 | issue = | pages = 96 | date = June 2010 | pmid = 20546612 | pmc = 2894790 | doi = 10.1186/1471-2350-11-96 }}
*{{cite journal |vauthors=Yang F, Xu YP, Li J |title=Cloning and characterization of a novel intracellular protein p48.2 that negatively regulates cell cycle progression. |journal=Int. J. Biochem. Cell Biol. |volume=41 |issue= 11 |pages= 2240–50 |year= 2009 |pmid= 19427400 |doi= 10.1016/j.biocel.2009.04.022 |display-authors=etal}}
* {{cite journal | vauthors = Yang F, Xu YP, Li J, Duan SS, Fu YJ, Zhang Y, Zhao Y, Qiao WT, Chen QM, Geng YQ, Che CY, Cao YL, Wang Y, Zhang L, Long L, He J, Cui QC, Chen SC, Wang SH, Liu L | display-authors = 6 | title = Cloning and characterization of a novel intracellular protein p48.2 that negatively regulates cell cycle progression | journal = The International Journal of Biochemistry & Cell Biology | volume = 41 | issue = 11 | pages = 2240–50 | date = November 2009 | pmid = 19427400 | doi = 10.1016/j.biocel.2009.04.022 }}
*{{cite journal |vauthors=Gevaert K, Goethals M, Martens L |title=Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. |journal=Nat. Biotechnol. |volume=21 |issue= 5 |pages= 566–9 |year= 2003 |pmid= 12665801 |doi= 10.1038/nbt810 |display-authors=etal}}
* {{cite journal | vauthors = Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J | title = Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides | journal = Nature Biotechnology | volume = 21 | issue = 5 | pages = 566–9 | date = May 2003 | pmid = 12665801 | doi = 10.1038/nbt810 }}
*{{cite journal |vauthors=Johnatty SE, Beesley J, Chen X |title=Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility &quot;hot-spot&quot;. |journal=PLoS Genet. |volume=6 |issue= 7 |pages= e1001016 |year= 2010 |pmid= 20628624 |doi= 10.1371/journal.pgen.1001016 |pmc=2900295|display-authors=etal}}
* {{cite journal | vauthors = Johnatty SE, Beesley J, Chen X, Macgregor S, Duffy DL, Spurdle AB, deFazio A, Gava N, Webb PM, Rossing MA, Doherty JA, Goodman MT, Lurie G, Thompson PJ, Wilkens LR, Ness RB, Moysich KB, Chang-Claude J, Wang-Gohrke S, Cramer DW, Terry KL, Hankinson SE, Tworoger SS, Garcia-Closas M, Yang H, Lissowska J, Chanock SJ, Pharoah PD, Song H, Whitemore AS, Pearce CL, Stram DO, Wu AH, Pike MC, Gayther SA, Ramus SJ, Menon U, Gentry-Maharaj A, Anton-Culver H, Ziogas A, Hogdall E, Kjaer SK, Hogdall C, Berchuck A, Schildkraut JM, Iversen ES, Moorman PG, Phelan CM, Sellers TA, Cunningham JM, Vierkant RA, Rider DN, Goode EL, Haviv I, Chenevix-Trench G | display-authors = 6 | title = Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility "hot-spot" | journal = PLoS Genetics | volume = 6 | issue = 7 | pages = e1001016 | date = July 2010 | pmid = 20628624 | pmc = 2900295 | doi = 10.1371/journal.pgen.1001016 }}
*{{cite journal |vauthors=Barbe L, Lundberg E, Oksvold P |title=Toward a confocal subcellular atlas of the human proteome. |journal=Mol. Cell. Proteomics |volume=7 |issue= 3 |pages= 499–508 |year= 2008 |pmid= 18029348 |doi= 10.1074/mcp.M700325-MCP200 |display-authors=etal}}
* {{cite journal | vauthors = Barbe L, Lundberg E, Oksvold P, Stenius A, Lewin E, Björling E, Asplund A, Pontén F, Brismar H, Uhlén M, Andersson-Svahn H | display-authors = 6 | title = Toward a confocal subcellular atlas of the human proteome | journal = Molecular & Cellular Proteomics | volume = 7 | issue = 3 | pages = 499–508 | date = March 2008 | pmid = 18029348 | doi = 10.1074/mcp.M700325-MCP200 }}
*{{cite journal |vauthors=Douglas J, Cilliers D, Coleman K |title=Mutations in RNF135, a gene within the NF1 microdeletion region, cause phenotypic abnormalities including overgrowth. |journal=Nat. Genet. |volume=39 |issue= 8 |pages= 963–5 |year= 2007 |pmid= 17632510 |doi= 10.1038/ng2083 |display-authors=etal}}
* {{cite journal | vauthors = Douglas J, Cilliers D, Coleman K, Tatton-Brown K, Barker K, Bernhard B, Burn J, Huson S, Josifova D, Lacombe D, Malik M, Mansour S, Reid E, Cormier-Daire V, Cole T, Rahman N | display-authors = 6 | title = Mutations in RNF135, a gene within the NF1 microdeletion region, cause phenotypic abnormalities including overgrowth | journal = Nature Genetics | volume = 39 | issue = 8 | pages = 963–5 | date = August 2007 | pmid = 17632510 | doi = 10.1038/ng2083 }}
{{refend}}
{{refend}}


[[Category:Genes mutated in mice]]
[[Category:Genes mutated in mice]]



{{gene-17-stub}}
{{gene-17-stub}}

Revision as of 02:35, 15 October 2019

CRLF3
Identifiers
AliasesCRLF3, CREME-9, CREME9, CRLM9, CYTOR4, FRWS, p48.2, cytokine receptor like factor 3
External IDsOMIM: 614853; MGI: 1860086; HomoloGene: 9327; GeneCards: CRLF3; OMA:CRLF3 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_015986

NM_001277106
NM_018776

RefSeq (protein)

NP_057070

NP_001264035
NP_061246

Location (UCSC)Chr 17: 30.77 – 30.82 MbChr 11: 79.94 – 79.97 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Cytokine receptor-like factor 3 is a protein that in humans is encoded by the CRLF3 gene.[5]

Model organisms

Model organisms have been used in the study of CRLF3 function. A conditional knockout mouse line, called Crlf3tm1a(KOMP)Wtsi[12][13] was generated as part of the International Knockout Mouse Consortium program, a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[14][15][16] Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[10][17] Twenty six tests were carried out and two significant phenotypes were reported. Homozygous mutant female adults had a significant increase in circulating levels of fructosamine, while mutants of both sexes had decreased platelet cell numbers.[10]

Function

Although CRLF3 signaling pathways have not yet been fully investigated it is very likely that CRLF3 is a neuroprotective erythropoietin receptor[18].

Origin

Phylogenetic analyses have shown that CRLF3 at first appeared in a common ancestor of Cnidaria and Bilateria and hence emerged with the origin of the nervous system[19].

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000176390Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000017561Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: cytokine receptor-like factor 3".
  6. ^ "Clinical chemistry data for Crlf3". Wellcome Trust Sanger Institute.
  7. ^ "Haematology data for Crlf3". Wellcome Trust Sanger Institute.
  8. ^ "Salmonella infection data for Crlf3". Wellcome Trust Sanger Institute.
  9. ^ "Citrobacter infection data for Crlf3". Wellcome Trust Sanger Institute.
  10. ^ a b c Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x.
  11. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  12. ^ "International Knockout Mouse Consortium".
  13. ^ "Mouse Genome Informatics".
  14. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, et al. (June 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  15. ^ Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  16. ^ Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  17. ^ van der Weyden L, White JK, Adams DJ, Logan DW (June 2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  18. ^ Hahn N, Knorr DY, Liebig J, Wüstefeld L, Peters K, Büscher M, et al. (2017). "The Insect Ortholog of the Human Orphan Cytokine Receptor CRLF3 Is a Neuroprotective Erythropoietin Receptor". Frontiers in Molecular Neuroscience. 10: 223. doi:10.3389/fnmol.2017.00223. PMC 5509957. PMID 28769759.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  19. ^ Hahn, Nina; Büschgens, Luca; Schwedhelm-Domeyer, Nicola; Bank, Sarah; Geurten, Bart R. H.; Neugebauer, Pia; Massih, Bita; Göpfert, Martin C.; Heinrich, Ralf (2019). "The Orphan Cytokine Receptor CRLF3 Emerged With the Origin of the Nervous System and Is a Neuroprotective Erythropoietin Receptor in Locusts". Frontiers in Molecular Neuroscience. 12. doi:10.3389/fnmol.2019.00251. ISSN 1662-5099.{{cite journal}}: CS1 maint: unflagged free DOI (link)

External links

Further reading