Hologenomics: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Stray word removed
Citation bot (talk | contribs)
Alter: url, journal. URLs might have been internationalized/anonymized. Add: pages, page, s2cid, pmid, doi, year, pmc, author pars. 1-1. Removed proxy or dead URL that duplicated free-DOI or unique identifier. Removed parameters. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Suggested by Headbomb | All pages linked from cached copy of Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia...
Line 1: Line 1:
'''Hologenomics''' is the [[omics]] study of [[hologenome]]s. A hologenome is the whole set of [[genome]]s of a [[holobiont]], or an organism together with all co-habitating [[Microbe|microbes]], other life forms, and [[Virus|viruses]].<ref>{{Cite journal|last=Rosenberg|first=Eugene|last2=Zilber-Rosenberg|first2=Ilana|date=2018-04-25|title=The hologenome concept of evolution after 10 years|url=https://doi.org/10.1186/s40168-018-0457-9|journal=Microbiome|volume=6|issue=1|pages=78|doi=10.1186/s40168-018-0457-9|issn=2049-2618|pmc=5922317|pmid=29695294|via=}}</ref> While the term hologenome originated from the [[hologenome theory of evolution]], which postulates [[natural selection]] occurs on the holobiont level,<ref name=":0">Number 6 in a series of 7 VHS recordings, ''A Decade of PCR: Celebrating 10 Years of Amplification'', Cold Spring Harbor Laboratory Press, 1994. [[ISBN (identifier)|ISBN]] [[Special:BookSources/0-87969-473-4|0-87969-473-4]].</ref> hologenomics uses an integrative framework to investigate interactions between the [[Host (biology)|host]] and its associated [[species]]. Examples include [[Gut flora|gut microbe]]<ref>{{Cite journal|last=Denman|first=Stuart E.|last2=McSweeney|first2=Christopher S.|date=2015-02-16|title=The Early Impact of Genomics and Metagenomics on Ruminal Microbiology|journal=Annual Review of Animal Biosciences|volume=3|issue=1|pages=447–465|doi=10.1146/annurev-animal-022114-110705|pmid=25387109|issn=2165-8102}}</ref> or viral<ref>{{Cite journal|last=Patowary|first=Ashok|last2=Chauhan|first2=Rajendra Kumar|last3=Singh|first3=Meghna|last4=KV|first4=Shamsudheen|last5=Periwal|first5=Vinita|last6=KP|first6=Kushwaha|last7=Sapkal|first7=Gajanand N.|last8=Bondre|first8=Vijay P.|last9=Gore|first9=Milind M.|date=2012-01-01|title=De novo identification of viral pathogens from cell culture hologenomes|journal=BMC Research Notes|volume=5|pages=11|doi=10.1186/1756-0500-5-11|issn=1756-0500|pmc=3284880|pmid=22226071}}</ref> genomes linked to human or animal genomes for host-microbe interaction research.<ref>{{Cite book|url=https://books.google.com/?id=EQNHAgAAQBAJ|title=The Microcosm Within: Evolution and Extinction in the Hologenome|last=Miller|first=William B. Jr.|publisher=Universal-Publishers|year=2013|isbn=978-1612332772|location=|pages=|via=}}</ref> Hologenomics approaches have also been used to explain genetic diversity in the microbial communities of [[Sponge|marine sponges]].<ref>{{Cite journal|last=Webster|first=Nicole S.|last2=Thomas|first2=Torsten|date=2016-05-04|title=The Sponge Hologenome|journal=mBio|language=en|volume=7|issue=2|pages=e00135–16|doi=10.1128/mBio.00135-16|issn=2150-7511|pmc=4850255|pmid=27103626}}</ref>
'''Hologenomics''' is the [[omics]] study of [[hologenome]]s. A hologenome is the whole set of [[genome]]s of a [[holobiont]], or an organism together with all co-habitating [[Microbe|microbes]], other life forms, and [[Virus|viruses]].<ref>{{Cite journal|last1=Rosenberg|first1=Eugene|last2=Zilber-Rosenberg|first2=Ilana|date=2018-04-25|title=The hologenome concept of evolution after 10 years|url=https://doi.org/10.1186/s40168-018-0457-9|journal=Microbiome|volume=6|issue=1|pages=78|doi=10.1186/s40168-018-0457-9|issn=2049-2618|pmc=5922317|pmid=29695294|via=}}</ref> While the term hologenome originated from the [[hologenome theory of evolution]], which postulates [[natural selection]] occurs on the holobiont level,<ref name=":0">Number 6 in a series of 7 VHS recordings, ''A Decade of PCR: Celebrating 10 Years of Amplification'', Cold Spring Harbor Laboratory Press, 1994. [[ISBN (identifier)|ISBN]] [[Special:BookSources/0-87969-473-4|0-87969-473-4]].</ref> hologenomics uses an integrative framework to investigate interactions between the [[Host (biology)|host]] and its associated [[species]]. Examples include [[Gut flora|gut microbe]]<ref>{{Cite journal|last1=Denman|first1=Stuart E.|last2=McSweeney|first2=Christopher S.|date=2015-02-16|title=The Early Impact of Genomics and Metagenomics on Ruminal Microbiology|journal=Annual Review of Animal Biosciences|volume=3|issue=1|pages=447–465|doi=10.1146/annurev-animal-022114-110705|pmid=25387109|issn=2165-8102}}</ref> or viral<ref>{{Cite journal|last1=Patowary|first1=Ashok|last2=Chauhan|first2=Rajendra Kumar|last3=Singh|first3=Meghna|last4=KV|first4=Shamsudheen|last5=Periwal|first5=Vinita|last6=KP|first6=Kushwaha|last7=Sapkal|first7=Gajanand N.|last8=Bondre|first8=Vijay P.|last9=Gore|first9=Milind M.|date=2012-01-01|title=De novo identification of viral pathogens from cell culture hologenomes|journal=BMC Research Notes|volume=5|pages=11|doi=10.1186/1756-0500-5-11|issn=1756-0500|pmc=3284880|pmid=22226071}}</ref> genomes linked to human or animal genomes for host-microbe interaction research.<ref>{{Cite book|url=https://books.google.com/books?id=EQNHAgAAQBAJ|title=The Microcosm Within: Evolution and Extinction in the Hologenome|last=Miller|first=William B. Jr.|publisher=Universal-Publishers|year=2013|isbn=978-1612332772|location=|pages=|via=}}</ref> Hologenomics approaches have also been used to explain genetic diversity in the microbial communities of [[Sponge|marine sponges]].<ref>{{Cite journal|last1=Webster|first1=Nicole S.|last2=Thomas|first2=Torsten|date=2016-05-04|title=The Sponge Hologenome|journal=mBio|language=en|volume=7|issue=2|pages=e00135–16|doi=10.1128/mBio.00135-16|issn=2150-7511|pmc=4850255|pmid=27103626}}</ref>


== History ==
== History ==
The origins of hologenomics revolves around the hologenome theory of evolution, which describes individual [[Multicellular organism|multicellular organisms]], microbes, and viruses establishing [[Symbiosis|symbiotic relationships]] and undergoing [[coevolution]] together.<ref name=":0" /><ref>{{Cite journal|last=Rosenberg|first=Eugene|last2=Zilber-Rosenberg|first2=Ilana|date=2018-04-25|title=The hologenomce concept of evolution after 10 years|url=https://doi.org/10.1186/s40168-018-0457-9|journal=Microbiome|volume=6|issue=1|pages=78|doi=10.1186/s40168-018-0457-9|issn=2049-2618|pmc=5922317|pmid=29695294|via=}}</ref> [[Richard Anthony Jefferson|Richard Jefferson]] introduced the term 'hologenome' to describe the host-symbiont genome as an evolutionary unit.<ref name=":5">Number 6 in a series of 7 VHS recordings, ''A Decade of PCR: Celebrating 10 Years of Amplification'', Cold Spring Harbor Laboratory Press, 1994. [[ISBN (identifier)|ISBN]] [[Special:BookSources/0-87969-473-4|0-87969-473-4]].</ref> Prior to this, [[Lynn Margulis]] used the term 'holobiont' to describe hosts and their associated species as an ecological unit.<ref>{{Cite book|last=Margulis|first=University of Massachusetts Amherst Massachusetts Lynn|url=https://books.google.ca/books?id=3sKzeiHUIUQC&redir_esc=y|title=Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis|last2=Margulis|first2=Lynn|last3=Fester|first3=René|date=1991|publisher=MIT Press|isbn=978-0-262-13269-5|language=en}}</ref>
The origins of hologenomics revolves around the hologenome theory of evolution, which describes individual [[Multicellular organism|multicellular organisms]], microbes, and viruses establishing [[Symbiosis|symbiotic relationships]] and undergoing [[coevolution]] together.<ref name=":0" /><ref>{{Cite journal|last1=Rosenberg|first1=Eugene|last2=Zilber-Rosenberg|first2=Ilana|date=2018-04-25|title=The hologenomce concept of evolution after 10 years|url=https://doi.org/10.1186/s40168-018-0457-9|journal=Microbiome|volume=6|issue=1|pages=78|doi=10.1186/s40168-018-0457-9|issn=2049-2618|pmc=5922317|pmid=29695294|via=}}</ref> [[Richard Anthony Jefferson|Richard Jefferson]] introduced the term 'hologenome' to describe the host-symbiont genome as an evolutionary unit.<ref name=":5">Number 6 in a series of 7 VHS recordings, ''A Decade of PCR: Celebrating 10 Years of Amplification'', Cold Spring Harbor Laboratory Press, 1994. [[ISBN (identifier)|ISBN]] [[Special:BookSources/0-87969-473-4|0-87969-473-4]].</ref> Prior to this, [[Lynn Margulis]] used the term 'holobiont' to describe hosts and their associated species as an ecological unit.<ref>{{Cite book|last1=Margulis|first1=University of Massachusetts Amherst Massachusetts Lynn|url=https://books.google.com/books?id=3sKzeiHUIUQC|title=Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis|last2=Margulis|first2=Lynn|last3=Fester|first3=René|date=1991|publisher=MIT Press|isbn=978-0-262-13269-5|language=en}}</ref>


== Eukaryotes-prokaryotes coevolution ==
== Eukaryotes-prokaryotes coevolution ==
[[File:The sponge hologenome.jpg|thumb|324x324px|Distinct microbial communities in sponges converge to have common functionality despite retaining phylogenetic differences.<ref name=":2" />]]
[[File:The sponge hologenome.jpg|thumb|324x324px|Distinct microbial communities in sponges converge to have common functionality despite retaining phylogenetic differences.<ref name=":2" />]]
Earliest evidence of multicellular-unicellular interactions are seen in sponges, and they are a well studied hologenomic system. [[Sponge|Porifera]] are often described as holobionts because they harbor a wide range of [[bacteria]], [[archaea]] and [[algae]]. Microbial communities present have been observed in facilitating [[Metabolism|metabolic]] functions and [[Immune system|immune]] responses. Offspring inherit these colonies via [[Vertical transmission|vertical]] and/or [[horizontal transmission]].<ref name=":2">{{Cite journal|last=Webster|first=Nicole S.|last2=Thomas|first2=Torsten|date=2016-05-04|title=The Sponge Hologenome|url=https://mbio.asm.org/content/7/2/e00135-16|journal=mBio|language=en|volume=7|issue=2|doi=10.1128/mBio.00135-16|issn=2150-7511|pmid=27103626}}</ref> Symbiont [[Colony (biology)|colonies]] are transferred through parental [[Gamete|gametes]] in vertical transmission, whereas [[offspring]] acquire same colonies from its environment in horizontal transmission. Vertical transmission is also seen in [[Terrestrial animal|terrestrial]] organisms like ''[[Cantao ocellatus|C. ocellatus]]'', where [[gammaproteobacteria]] in the parental gut is vertically transferred through egg contamination.<ref>{{Cite journal|last=Kaiwa|first=Nahomi|last2=Hosokawa|first2=Takahiro|last3=Kikuchi|first3=Yoshitomo|last4=Nikoh|first4=Naruo|last5=Meng|first5=Xian Ying|last6=Kimura|first6=Nobutada|last7=Ito|first7=Motomi|last8=Fukatsu|first8=Takema|date=2010-06-01|title=Primary Gut Symbiont and Secondary, Sodalis-Allied Symbiont of the Scutellerid Stinkbug Cantao ocellatus|url=https://aem.asm.org/content/76/11/3486|journal=Applied and Environmental Microbiology|language=en|volume=76|issue=11|pages=3486–3494|doi=10.1128/AEM.00421-10|issn=0099-2240|pmid=20400564}}</ref>
Earliest evidence of multicellular-unicellular interactions are seen in sponges, and they are a well studied hologenomic system. [[Sponge|Porifera]] are often described as holobionts because they harbor a wide range of [[bacteria]], [[archaea]] and [[algae]]. Microbial communities present have been observed in facilitating [[Metabolism|metabolic]] functions and [[Immune system|immune]] responses. Offspring inherit these colonies via [[Vertical transmission|vertical]] and/or [[horizontal transmission]].<ref name=":2">{{Cite journal|last1=Webster|first1=Nicole S.|last2=Thomas|first2=Torsten|date=2016-05-04|title=The Sponge Hologenome|url=https://mbio.asm.org/content/7/2/e00135-16|journal=mBio|language=en|volume=7|issue=2|doi=10.1128/mBio.00135-16|issn=2150-7511|pmid=27103626}}</ref> Symbiont [[Colony (biology)|colonies]] are transferred through parental [[Gamete|gametes]] in vertical transmission, whereas [[offspring]] acquire same colonies from its environment in horizontal transmission. Vertical transmission is also seen in [[Terrestrial animal|terrestrial]] organisms like ''[[Cantao ocellatus|C. ocellatus]]'', where [[gammaproteobacteria]] in the parental gut is vertically transferred through egg contamination.<ref>{{Cite journal|last1=Kaiwa|first1=Nahomi|last2=Hosokawa|first2=Takahiro|last3=Kikuchi|first3=Yoshitomo|last4=Nikoh|first4=Naruo|last5=Meng|first5=Xian Ying|last6=Kimura|first6=Nobutada|last7=Ito|first7=Motomi|last8=Fukatsu|first8=Takema|date=2010-06-01|title=Primary Gut Symbiont and Secondary, Sodalis-Allied Symbiont of the Scutellerid Stinkbug Cantao ocellatus|url=https://aem.asm.org/content/76/11/3486|journal=Applied and Environmental Microbiology|language=en|volume=76|issue=11|pages=3486–3494|doi=10.1128/AEM.00421-10|issn=0099-2240|pmid=20400564|pmc=2876435}}</ref>


== Criticism ==
== Criticism ==
The hologenome theory evolution is not fully accepted, and research in [[Microbial phylogenetics|microbial-host phylogenetics]] is ongoing. Rather than the selection of corals with symbiotic microbial communities, [[coral bleaching]] may simply be a result of [[Stress (biology)|environmental stressors]], and bacterial presence in bleached coral may be explained simply as opportunistic [[Colonisation (biology)|colonization]] of the host.<ref>{{Cite journal|last=Ainsworth|first=T. D.|last2=Fine|first2=M.|last3=Roff|first3=G.|last4=Hoegh-Guldberg|first4=O.|title=Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica|url=https://www.academia.edu/3790387/Bacteria_are_not_the_primary_cause_of_bleaching_in_the_Mediterranean_coral_Oculina_patagonica|journal=The ISME Journal|language=en|volume=2|issue=1|pages=67–73|issn=1751-7362}}</ref> Ubiquity testing also revealed many different [[Bacteria|bacterial]] and [[Algae|algal]] symbionts not only being associated with a single species of coral,<ref>{{Cite journal|last=Hester|first=Eric R.|last2=Barott|first2=Katie L.|last3=Nulton|first3=Jim|last4=Vermeij|first4=Mark JA|last5=Rohwer|first5=Forest L.|date=May 2016|title=Stable and sporadic symbiotic communities of coral and algal holobionts|url=https://www.nature.com/articles/ismej2015190|journal=The ISME Journal|language=en|volume=10|issue=5|pages=1157–1169|doi=10.1038/ismej.2015.190|issn=1751-7370}}</ref> suggesting hologenomics just identifies and validates mechanistic interactions between [[Pathogen|pathogens]], microbes, and their hosts.<ref name=":3">{{Cite journal|last=Theis|first=Kevin R.|date=2018-04-10|title=Hologenomics: Systems-Level Host Biology|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895875/|journal=mSystems|volume=3|issue=2|doi=10.1128/mSystems.00164-17|issn=2379-5077|pmc=5895875|pmid=29657963}}</ref>
The hologenome theory evolution is not fully accepted, and research in [[Microbial phylogenetics|microbial-host phylogenetics]] is ongoing. Rather than the selection of corals with symbiotic microbial communities, [[coral bleaching]] may simply be a result of [[Stress (biology)|environmental stressors]], and bacterial presence in bleached coral may be explained simply as opportunistic [[Colonisation (biology)|colonization]] of the host.<ref>{{Cite journal|last1=Ainsworth|first1=T. D.|last2=Fine|first2=M.|last3=Roff|first3=G.|last4=Hoegh-Guldberg|first4=O.|title=Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica|url=https://www.academia.edu/3790387|journal=The ISME Journal|year=2008|language=en|volume=2|issue=1|pages=67–73|doi=10.1038/ismej.2007.88|pmid=18059488|s2cid=1032896|issn=1751-7362}}</ref> Ubiquity testing also revealed many different [[Bacteria|bacterial]] and [[Algae|algal]] symbionts not only being associated with a single species of coral,<ref>{{Cite journal|last1=Hester|first1=Eric R.|last2=Barott|first2=Katie L.|last3=Nulton|first3=Jim|last4=Vermeij|first4=Mark JA|last5=Rohwer|first5=Forest L.|date=May 2016|title=Stable and sporadic symbiotic communities of coral and algal holobionts|url=https://www.nature.com/articles/ismej2015190|journal=The ISME Journal|language=en|volume=10|issue=5|pages=1157–1169|doi=10.1038/ismej.2015.190|pmid=26555246|pmc=5029208|issn=1751-7370}}</ref> suggesting hologenomics just identifies and validates mechanistic interactions between [[Pathogen|pathogens]], microbes, and their hosts.<ref name=":3">{{Cite journal|last=Theis|first=Kevin R.|date=2018-04-10|title=Hologenomics: Systems-Level Host Biology|journal=mSystems|volume=3|issue=2|doi=10.1128/mSystems.00164-17|issn=2379-5077|pmc=5895875|pmid=29657963}}</ref>


== Examples of discoveries with hologenomic approaches ==
== Examples of discoveries with hologenomic approaches ==


* [[Nanopore sequencing]] - Profiling organelle genomes in the holobiont ''[[Caulerpa|C. ashmeadii]]'' revealed that ''[[Rhodospirillaceae]]'' was dominant among six putative [[Endosymbiont|endosymbionts]].<ref name=":6">{{Cite journal|last=Sauvage|first=Thomas|last2=Schmidt|first2=William E.|last3=Yoon|first3=Hwan Su|last4=Paul|first4=Valerie J.|last5=Fredericq|first5=Suzanne|date=2019-11-13|title=Promising prospects of nanopore sequencing for algal hologenomics and structural variation discovery|url=https://pubmed.ncbi.nlm.nih.gov/31722669/|journal=BMC genomics|volume=20|issue=1|pages=850|doi=10.1186/s12864-019-6248-2|issn=1471-2164|pmc=6854639|pmid=31722669}}</ref>
* [[Nanopore sequencing]] - Profiling organelle genomes in the holobiont ''[[Caulerpa|C. ashmeadii]]'' revealed that ''[[Rhodospirillaceae]]'' was dominant among six putative [[Endosymbiont|endosymbionts]].<ref name=":6">{{Cite journal|last1=Sauvage|first1=Thomas|last2=Schmidt|first2=William E.|last3=Yoon|first3=Hwan Su|last4=Paul|first4=Valerie J.|last5=Fredericq|first5=Suzanne|date=2019-11-13|title=Promising prospects of nanopore sequencing for algal hologenomics and structural variation discovery|url=https://pubmed.ncbi.nlm.nih.gov/31722669/|journal=BMC Genomics|volume=20|issue=1|pages=850|doi=10.1186/s12864-019-6248-2|issn=1471-2164|pmc=6854639|pmid=31722669}}</ref>
*[[16S ribosomal RNA|16S rRNA]] sequencing - Sponge-specific microbial communities were profiled with rRNA and rRNA gene sequencing, providing insight into bacterial diversity and activity of these communities<ref>{{Cite journal|last=Kamke|first=Janine|last2=Taylor|first2=Michael W.|last3=Schmitt|first3=Susanne|date=2017-01-07|title=Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons|url=https://www.nature.com/articles/ismej2009143|journal=The ISME Journal|language=en|volume=4|issue=4|pages=498–508|doi=10.1038/ismej.2009.143|issn=1751-7370|via=}}</ref>
*[[16S ribosomal RNA|16S rRNA]] sequencing - Sponge-specific microbial communities were profiled with rRNA and rRNA gene sequencing, providing insight into bacterial diversity and activity of these communities<ref>{{Cite journal|last1=Kamke|first1=Janine|last2=Taylor|first2=Michael W.|last3=Schmitt|first3=Susanne|date=2017-01-07|title=Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons|url=https://www.nature.com/articles/ismej2009143|journal=The ISME Journal|language=en|volume=4|issue=4|pages=498–508|doi=10.1038/ismej.2009.143|pmid=20054355|issn=1751-7370|via=}}</ref>
*[[Metagenomics|Metagenomic DNA]] - Gene profiles of sponge microbiomes were compared to surrounding planktonic communities.<ref name=":02">{{Cite journal|last=Fan|first=Lu|last2=Reynolds|first2=David|last3=Liu|first3=Michael|last4=Stark|first4=Manuel|last5=Kjelleberg|first5=Staffan|last6=Webster|first6=Nicole S.|last7=Thomas|first7=Torsten|date=2012-07-03|title=Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts|url=https://www.pnas.org/content/109/27/E1878|journal=Proceedings of the National Academy of Sciences|language=en|volume=109|issue=27|pages=E1878–E1887|doi=10.1073/pnas.1203287109|issn=0027-8424|pmid=22699508}}</ref> Core function genes of microbial symbionts expressed consistent patterns of phylogeny and function that differ from planktonic samples, demonstrating host-symbiont co-evolution.<ref name=":02" />
*[[Metagenomics|Metagenomic DNA]] - Gene profiles of sponge microbiomes were compared to surrounding planktonic communities.<ref name=":02">{{Cite journal|last1=Fan|first1=Lu|last2=Reynolds|first2=David|last3=Liu|first3=Michael|last4=Stark|first4=Manuel|last5=Kjelleberg|first5=Staffan|last6=Webster|first6=Nicole S.|last7=Thomas|first7=Torsten|date=2012-07-03|title=Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts|url=https://www.pnas.org/content/109/27/E1878|journal=Proceedings of the National Academy of Sciences|language=en|volume=109|issue=27|pages=E1878–E1887|doi=10.1073/pnas.1203287109|issn=0027-8424|pmid=22699508|pmc=3390844}}</ref> Core function genes of microbial symbionts expressed consistent patterns of phylogeny and function that differ from planktonic samples, demonstrating host-symbiont co-evolution.<ref name=":02" />


== Applications ==
== Applications ==


=== Medicine ===
=== Medicine ===
It's hypothesized the continued incidence [[Non-communicable disease|non-infectious diseases]] is a result of [[Modernization theory|modernization]] reducing the diversity of symbiotic microbes.<ref name=":3" /> The human microbiome has also been correlated to numerous [[Cause (medicine)|etiologies]] of [[non-communicable disease]], such as brain disorders,<ref>{{Cite journal|last=Zhu|first=Sibo|last2=Jiang|first2=Yanfeng|last3=Xu|first3=Kelin|last4=Cui|first4=Mei|last5=Ye|first5=Weimin|last6=Zhao|first6=Genming|last7=Jin|first7=Li|last8=Chen|first8=Xingdong|date=2020-01-17|title=The progress of gut microbiome research related to brain disorders|url=https://doi.org/10.1186/s12974-020-1705-z|journal=Journal of Neuroinflammation|volume=17|issue=1|pages=25|doi=10.1186/s12974-020-1705-z|issn=1742-2094|pmc=6969442|pmid=31952509}}</ref> cancer,<ref>{{Cite journal|last=Xavier|first=Joao B.|last2=Young|first2=Vincent B.|last3=Skufca|first3=Joseph|last4=Ginty|first4=Fiona|last5=Testerman|first5=Traci|last6=Pearson|first6=Alexander T.|last7=Macklin|first7=Paul|last8=Mitchell|first8=Amir|last9=Shmulevich|first9=Ilya|last10=Xie|first10=Lei|last11=Caporaso|first11=J. Gregory|date=2020-03-01|title=The Cancer Microbiome: Distinguishing Direct and Indirect Effects Requires a Systemic View|url=https://www.cell.com/trends/cancer/abstract/S2405-8033(20)30017-0|journal=Trends in Cancer|language=English|volume=6|issue=3|pages=192–204|doi=10.1016/j.trecan.2020.01.004|issn=2405-8033|pmid=32101723}}</ref><ref>{{Cite journal|last=Helmink|first=Beth A.|last2=Khan|first2=M. A. Wadud|last3=Hermann|first3=Amanda|last4=Gopalakrishnan|first4=Vancheswaran|last5=Wargo|first5=Jennifer A.|date=2019-03-06|title=The microbiome, cancer, and cancer therapy|url=https://www.nature.com/articles/s41591-019-0377-7|journal=Nature Medicine|language=en|volume=25|issue=3|pages=377–388|doi=10.1038/s41591-019-0377-7|issn=1546-170X|via=}}</ref> and heart disease.<ref>{{Cite journal|last=Trøseid|first=Marius|last2=Andersen|first2=Geir Øystein|last3=Broch|first3=Kaspar|last4=Hov|first4=Johannes Roksund|date=2020-02-01|title=The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions|url=https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(20)30024-4/abstract|journal=EBioMedicine|language=English|volume=52|doi=10.1016/j.ebiom.2020.102649|issn=2352-3964|pmid=32062353}}</ref> Interactions between human microbiome and human health are complex and suggest a hologenomic approach.
It's hypothesized the continued incidence [[Non-communicable disease|non-infectious diseases]] is a result of [[Modernization theory|modernization]] reducing the diversity of symbiotic microbes.<ref name=":3" /> The human microbiome has also been correlated to numerous [[Cause (medicine)|etiologies]] of [[non-communicable disease]], such as brain disorders,<ref>{{Cite journal|last1=Zhu|first1=Sibo|last2=Jiang|first2=Yanfeng|last3=Xu|first3=Kelin|last4=Cui|first4=Mei|last5=Ye|first5=Weimin|last6=Zhao|first6=Genming|last7=Jin|first7=Li|last8=Chen|first8=Xingdong|date=2020-01-17|title=The progress of gut microbiome research related to brain disorders|url=https://doi.org/10.1186/s12974-020-1705-z|journal=Journal of Neuroinflammation|volume=17|issue=1|pages=25|doi=10.1186/s12974-020-1705-z|issn=1742-2094|pmc=6969442|pmid=31952509}}</ref> cancer,<ref>{{Cite journal|last1=Xavier|first1=Joao B.|last2=Young|first2=Vincent B.|last3=Skufca|first3=Joseph|last4=Ginty|first4=Fiona|last5=Testerman|first5=Traci|last6=Pearson|first6=Alexander T.|last7=Macklin|first7=Paul|last8=Mitchell|first8=Amir|last9=Shmulevich|first9=Ilya|last10=Xie|first10=Lei|last11=Caporaso|first11=J. Gregory|date=2020-03-01|title=The Cancer Microbiome: Distinguishing Direct and Indirect Effects Requires a Systemic View|url=https://www.cell.com/trends/cancer/abstract/S2405-8033(20)30017-0|journal=Trends in Cancer|language=English|volume=6|issue=3|pages=192–204|doi=10.1016/j.trecan.2020.01.004|issn=2405-8033|pmid=32101723|pmc=7098063}}</ref><ref>{{Cite journal|last1=Helmink|first1=Beth A.|last2=Khan|first2=M. A. Wadud|last3=Hermann|first3=Amanda|last4=Gopalakrishnan|first4=Vancheswaran|last5=Wargo|first5=Jennifer A.|date=2019-03-06|title=The microbiome, cancer, and cancer therapy|url=https://www.nature.com/articles/s41591-019-0377-7|journal=Nature Medicine|language=en|volume=25|issue=3|pages=377–388|doi=10.1038/s41591-019-0377-7|pmid=30842679|issn=1546-170X|via=}}</ref> and heart disease.<ref>{{Cite journal|last1=Trøseid|first1=Marius|last2=Andersen|first2=Geir Øystein|last3=Broch|first3=Kaspar|last4=Hov|first4=Johannes Roksund|date=2020-02-01|title=The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions|url=https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(20)30024-4/abstract|journal=EBioMedicine|language=English|volume=52|page=102649|doi=10.1016/j.ebiom.2020.102649|issn=2352-3964|pmid=32062353|pmc=7016372}}</ref> Interactions between human microbiome and human health are complex and suggest a hologenomic approach.


Disease [[Biomarker|biomarkers]] can be found by investigating lifestyle, genomic differences, and [[Messenger RNA|mRNA]]/[[protein]]/[[metabolite]] profiles of the patient and their microbiota.<ref name=":3" /> For investigating microbiomes and specifically microbiota subcommunities that may contribute to a disease [[phenotype]], [[Longitudinal study|longitudinal studies]] are recommended as everyone has a personalized microbiome with small differences in microbiome [[Phylotype|phylotypes]].<ref name=":3" /> A personalized plan managing a person’s microbiome can then be developed, with [[Prebiotic (nutrition)|prebiotics]] nurturing beneficial endogenous microbes, and [[Probiotic|probiotics]] manipulating a person’s hologenome.<ref>{{Cite journal|last=Young|first=Vincent B.|date=2017-03-15|title=The role of the microbiome in human health and disease: an introduction for clinicians|url=https://www.bmj.com/content/356/bmj.j831|journal=BMJ|language=en|volume=356|doi=10.1136/bmj.j831|issn=0959-8138|pmid=28298355}}</ref>
Disease [[Biomarker|biomarkers]] can be found by investigating lifestyle, genomic differences, and [[Messenger RNA|mRNA]]/[[protein]]/[[metabolite]] profiles of the patient and their microbiota.<ref name=":3" /> For investigating microbiomes and specifically microbiota subcommunities that may contribute to a disease [[phenotype]], [[Longitudinal study|longitudinal studies]] are recommended as everyone has a personalized microbiome with small differences in microbiome [[Phylotype|phylotypes]].<ref name=":3" /> A personalized plan managing a person’s microbiome can then be developed, with [[Prebiotic (nutrition)|prebiotics]] nurturing beneficial endogenous microbes, and [[Probiotic|probiotics]] manipulating a person’s hologenome.<ref>{{Cite journal|last=Young|first=Vincent B.|date=2017-03-15|title=The role of the microbiome in human health and disease: an introduction for clinicians|url=https://www.bmj.com/content/356/bmj.j831|journal=BMJ|language=en|volume=356|pages=j831|doi=10.1136/bmj.j831|issn=0959-8138|pmid=28298355}}</ref>


=== Immunology ===
=== Immunology ===
Conditional [[Mutualism (biology)|mutualism]], where [[Parasitism|parasites]] have mutualistic effects under certain environmental/ecological conditions, have been found with holobiont-holobiont interactions.<ref name=":1">{{Cite journal|last=Dheilly|first=Nolwenn Marie|date=2014-07-03|title=Holobiont–Holobiont Interactions: Redefining Host–Parasite Interactions|url=https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1004093|journal=PLOS Pathogens|language=en|volume=10|issue=7|pages=e1004093|doi=10.1371/journal.ppat.1004093|issn=1553-7374|pmc=4081813|pmid=24992663}}</ref> Maturation of mammalian host immune systems has been known to involve [[Gastrointestinal tract|gastrointestinal]] [[Flora (microbiology)|flora]].<ref>{{Cite journal|last=Belkaid|first=Yasmine|last2=Hand|first2=Timothy W.|date=2014-03-27|title=Role of the Microbiota in Immunity and Inflammation|url=https://www.cell.com/cell/abstract/S0092-8674(14)00345-6|journal=Cell|language=English|volume=157|issue=1|pages=121–141|doi=10.1016/j.cell.2014.03.011|issn=0092-8674|pmid=24679531}}</ref> Understanding microorganism recognition of foreign pathogenic invasion and how host immunity favors the most ideal symbiont may aid in discovering novel therapeutic treatments to combat evolving diseases.
Conditional [[Mutualism (biology)|mutualism]], where [[Parasitism|parasites]] have mutualistic effects under certain environmental/ecological conditions, have been found with holobiont-holobiont interactions.<ref name=":1">{{Cite journal|last=Dheilly|first=Nolwenn Marie|date=2014-07-03|title=Holobiont–Holobiont Interactions: Redefining Host–Parasite Interactions|url=https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1004093|journal=PLOS Pathogens|language=en|volume=10|issue=7|pages=e1004093|doi=10.1371/journal.ppat.1004093|issn=1553-7374|pmc=4081813|pmid=24992663}}</ref> Maturation of mammalian host immune systems has been known to involve [[Gastrointestinal tract|gastrointestinal]] [[Flora (microbiology)|flora]].<ref>{{Cite journal|last1=Belkaid|first1=Yasmine|last2=Hand|first2=Timothy W.|date=2014-03-27|title=Role of the Microbiota in Immunity and Inflammation|url=https://www.cell.com/cell/abstract/S0092-8674(14)00345-6|journal=Cell|language=English|volume=157|issue=1|pages=121–141|doi=10.1016/j.cell.2014.03.011|issn=0092-8674|pmid=24679531|pmc=4056765}}</ref> Understanding microorganism recognition of foreign pathogenic invasion and how host immunity favors the most ideal symbiont may aid in discovering novel therapeutic treatments to combat evolving diseases.


== See also ==
== See also ==

Revision as of 22:49, 5 December 2020

Hologenomics is the omics study of hologenomes. A hologenome is the whole set of genomes of a holobiont, or an organism together with all co-habitating microbes, other life forms, and viruses.[1] While the term hologenome originated from the hologenome theory of evolution, which postulates natural selection occurs on the holobiont level,[2] hologenomics uses an integrative framework to investigate interactions between the host and its associated species. Examples include gut microbe[3] or viral[4] genomes linked to human or animal genomes for host-microbe interaction research.[5] Hologenomics approaches have also been used to explain genetic diversity in the microbial communities of marine sponges.[6]

History

The origins of hologenomics revolves around the hologenome theory of evolution, which describes individual multicellular organisms, microbes, and viruses establishing symbiotic relationships and undergoing coevolution together.[2][7] Richard Jefferson introduced the term 'hologenome' to describe the host-symbiont genome as an evolutionary unit.[8] Prior to this, Lynn Margulis used the term 'holobiont' to describe hosts and their associated species as an ecological unit.[9]

Eukaryotes-prokaryotes coevolution

Distinct microbial communities in sponges converge to have common functionality despite retaining phylogenetic differences.[10]

Earliest evidence of multicellular-unicellular interactions are seen in sponges, and they are a well studied hologenomic system. Porifera are often described as holobionts because they harbor a wide range of bacteria, archaea and algae. Microbial communities present have been observed in facilitating metabolic functions and immune responses. Offspring inherit these colonies via vertical and/or horizontal transmission.[10] Symbiont colonies are transferred through parental gametes in vertical transmission, whereas offspring acquire same colonies from its environment in horizontal transmission. Vertical transmission is also seen in terrestrial organisms like C. ocellatus, where gammaproteobacteria in the parental gut is vertically transferred through egg contamination.[11]

Criticism

The hologenome theory evolution is not fully accepted, and research in microbial-host phylogenetics is ongoing. Rather than the selection of corals with symbiotic microbial communities, coral bleaching may simply be a result of environmental stressors, and bacterial presence in bleached coral may be explained simply as opportunistic colonization of the host.[12] Ubiquity testing also revealed many different bacterial and algal symbionts not only being associated with a single species of coral,[13] suggesting hologenomics just identifies and validates mechanistic interactions between pathogens, microbes, and their hosts.[14]

Examples of discoveries with hologenomic approaches

  • Nanopore sequencing - Profiling organelle genomes in the holobiont C. ashmeadii revealed that Rhodospirillaceae was dominant among six putative endosymbionts.[15]
  • 16S rRNA sequencing - Sponge-specific microbial communities were profiled with rRNA and rRNA gene sequencing, providing insight into bacterial diversity and activity of these communities[16]
  • Metagenomic DNA - Gene profiles of sponge microbiomes were compared to surrounding planktonic communities.[17] Core function genes of microbial symbionts expressed consistent patterns of phylogeny and function that differ from planktonic samples, demonstrating host-symbiont co-evolution.[17]

Applications

Medicine

It's hypothesized the continued incidence non-infectious diseases is a result of modernization reducing the diversity of symbiotic microbes.[14] The human microbiome has also been correlated to numerous etiologies of non-communicable disease, such as brain disorders,[18] cancer,[19][20] and heart disease.[21] Interactions between human microbiome and human health are complex and suggest a hologenomic approach.

Disease biomarkers can be found by investigating lifestyle, genomic differences, and mRNA/protein/metabolite profiles of the patient and their microbiota.[14] For investigating microbiomes and specifically microbiota subcommunities that may contribute to a disease phenotype, longitudinal studies are recommended as everyone has a personalized microbiome with small differences in microbiome phylotypes.[14] A personalized plan managing a person’s microbiome can then be developed, with prebiotics nurturing beneficial endogenous microbes, and probiotics manipulating a person’s hologenome.[22]

Immunology

Conditional mutualism, where parasites have mutualistic effects under certain environmental/ecological conditions, have been found with holobiont-holobiont interactions.[23] Maturation of mammalian host immune systems has been known to involve gastrointestinal flora.[24] Understanding microorganism recognition of foreign pathogenic invasion and how host immunity favors the most ideal symbiont may aid in discovering novel therapeutic treatments to combat evolving diseases.

See also

References

  1. ^ Rosenberg, Eugene; Zilber-Rosenberg, Ilana (2018-04-25). "The hologenome concept of evolution after 10 years". Microbiome. 6 (1): 78. doi:10.1186/s40168-018-0457-9. ISSN 2049-2618. PMC 5922317. PMID 29695294.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  2. ^ a b Number 6 in a series of 7 VHS recordings, A Decade of PCR: Celebrating 10 Years of Amplification, Cold Spring Harbor Laboratory Press, 1994. ISBN 0-87969-473-4.
  3. ^ Denman, Stuart E.; McSweeney, Christopher S. (2015-02-16). "The Early Impact of Genomics and Metagenomics on Ruminal Microbiology". Annual Review of Animal Biosciences. 3 (1): 447–465. doi:10.1146/annurev-animal-022114-110705. ISSN 2165-8102. PMID 25387109.
  4. ^ Patowary, Ashok; Chauhan, Rajendra Kumar; Singh, Meghna; KV, Shamsudheen; Periwal, Vinita; KP, Kushwaha; Sapkal, Gajanand N.; Bondre, Vijay P.; Gore, Milind M. (2012-01-01). "De novo identification of viral pathogens from cell culture hologenomes". BMC Research Notes. 5: 11. doi:10.1186/1756-0500-5-11. ISSN 1756-0500. PMC 3284880. PMID 22226071.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  5. ^ Miller, William B. Jr. (2013). The Microcosm Within: Evolution and Extinction in the Hologenome. Universal-Publishers. ISBN 978-1612332772.
  6. ^ Webster, Nicole S.; Thomas, Torsten (2016-05-04). "The Sponge Hologenome". mBio. 7 (2): e00135–16. doi:10.1128/mBio.00135-16. ISSN 2150-7511. PMC 4850255. PMID 27103626.
  7. ^ Rosenberg, Eugene; Zilber-Rosenberg, Ilana (2018-04-25). "The hologenomce concept of evolution after 10 years". Microbiome. 6 (1): 78. doi:10.1186/s40168-018-0457-9. ISSN 2049-2618. PMC 5922317. PMID 29695294.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  8. ^ Number 6 in a series of 7 VHS recordings, A Decade of PCR: Celebrating 10 Years of Amplification, Cold Spring Harbor Laboratory Press, 1994. ISBN 0-87969-473-4.
  9. ^ Margulis, University of Massachusetts Amherst Massachusetts Lynn; Margulis, Lynn; Fester, René (1991). Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis. MIT Press. ISBN 978-0-262-13269-5.
  10. ^ a b Webster, Nicole S.; Thomas, Torsten (2016-05-04). "The Sponge Hologenome". mBio. 7 (2). doi:10.1128/mBio.00135-16. ISSN 2150-7511. PMID 27103626.
  11. ^ Kaiwa, Nahomi; Hosokawa, Takahiro; Kikuchi, Yoshitomo; Nikoh, Naruo; Meng, Xian Ying; Kimura, Nobutada; Ito, Motomi; Fukatsu, Takema (2010-06-01). "Primary Gut Symbiont and Secondary, Sodalis-Allied Symbiont of the Scutellerid Stinkbug Cantao ocellatus". Applied and Environmental Microbiology. 76 (11): 3486–3494. doi:10.1128/AEM.00421-10. ISSN 0099-2240. PMC 2876435. PMID 20400564.
  12. ^ Ainsworth, T. D.; Fine, M.; Roff, G.; Hoegh-Guldberg, O. (2008). "Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica". The ISME Journal. 2 (1): 67–73. doi:10.1038/ismej.2007.88. ISSN 1751-7362. PMID 18059488. S2CID 1032896.
  13. ^ Hester, Eric R.; Barott, Katie L.; Nulton, Jim; Vermeij, Mark JA; Rohwer, Forest L. (May 2016). "Stable and sporadic symbiotic communities of coral and algal holobionts". The ISME Journal. 10 (5): 1157–1169. doi:10.1038/ismej.2015.190. ISSN 1751-7370. PMC 5029208. PMID 26555246.
  14. ^ a b c d Theis, Kevin R. (2018-04-10). "Hologenomics: Systems-Level Host Biology". mSystems. 3 (2). doi:10.1128/mSystems.00164-17. ISSN 2379-5077. PMC 5895875. PMID 29657963.
  15. ^ Sauvage, Thomas; Schmidt, William E.; Yoon, Hwan Su; Paul, Valerie J.; Fredericq, Suzanne (2019-11-13). "Promising prospects of nanopore sequencing for algal hologenomics and structural variation discovery". BMC Genomics. 20 (1): 850. doi:10.1186/s12864-019-6248-2. ISSN 1471-2164. PMC 6854639. PMID 31722669.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  16. ^ Kamke, Janine; Taylor, Michael W.; Schmitt, Susanne (2017-01-07). "Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons". The ISME Journal. 4 (4): 498–508. doi:10.1038/ismej.2009.143. ISSN 1751-7370. PMID 20054355.
  17. ^ a b Fan, Lu; Reynolds, David; Liu, Michael; Stark, Manuel; Kjelleberg, Staffan; Webster, Nicole S.; Thomas, Torsten (2012-07-03). "Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts". Proceedings of the National Academy of Sciences. 109 (27): E1878–E1887. doi:10.1073/pnas.1203287109. ISSN 0027-8424. PMC 3390844. PMID 22699508.
  18. ^ Zhu, Sibo; Jiang, Yanfeng; Xu, Kelin; Cui, Mei; Ye, Weimin; Zhao, Genming; Jin, Li; Chen, Xingdong (2020-01-17). "The progress of gut microbiome research related to brain disorders". Journal of Neuroinflammation. 17 (1): 25. doi:10.1186/s12974-020-1705-z. ISSN 1742-2094. PMC 6969442. PMID 31952509.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  19. ^ Xavier, Joao B.; Young, Vincent B.; Skufca, Joseph; Ginty, Fiona; Testerman, Traci; Pearson, Alexander T.; Macklin, Paul; Mitchell, Amir; Shmulevich, Ilya; Xie, Lei; Caporaso, J. Gregory (2020-03-01). "The Cancer Microbiome: Distinguishing Direct and Indirect Effects Requires a Systemic View". Trends in Cancer. 6 (3): 192–204. doi:10.1016/j.trecan.2020.01.004. ISSN 2405-8033. PMC 7098063. PMID 32101723.
  20. ^ Helmink, Beth A.; Khan, M. A. Wadud; Hermann, Amanda; Gopalakrishnan, Vancheswaran; Wargo, Jennifer A. (2019-03-06). "The microbiome, cancer, and cancer therapy". Nature Medicine. 25 (3): 377–388. doi:10.1038/s41591-019-0377-7. ISSN 1546-170X. PMID 30842679.
  21. ^ Trøseid, Marius; Andersen, Geir Øystein; Broch, Kaspar; Hov, Johannes Roksund (2020-02-01). "The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions". EBioMedicine. 52: 102649. doi:10.1016/j.ebiom.2020.102649. ISSN 2352-3964. PMC 7016372. PMID 32062353.
  22. ^ Young, Vincent B. (2017-03-15). "The role of the microbiome in human health and disease: an introduction for clinicians". BMJ. 356: j831. doi:10.1136/bmj.j831. ISSN 0959-8138. PMID 28298355.
  23. ^ Dheilly, Nolwenn Marie (2014-07-03). "Holobiont–Holobiont Interactions: Redefining Host–Parasite Interactions". PLOS Pathogens. 10 (7): e1004093. doi:10.1371/journal.ppat.1004093. ISSN 1553-7374. PMC 4081813. PMID 24992663.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  24. ^ Belkaid, Yasmine; Hand, Timothy W. (2014-03-27). "Role of the Microbiota in Immunity and Inflammation". Cell. 157 (1): 121–141. doi:10.1016/j.cell.2014.03.011. ISSN 0092-8674. PMC 4056765. PMID 24679531.