Sadashiva Karnik: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Vegitaboss (talk | contribs)
awards
Vegitaboss (talk | contribs)
publications
Tags: nowiki added Visual edit
Line 21: Line 21:
* In 2013 he became Chair of IUPHAR Committee on Angiotensin Receptors and continues his service in that position.
* In 2013 he became Chair of IUPHAR Committee on Angiotensin Receptors and continues his service in that position.
* He has served on scientific review panels for American Heart Association, [[National Heart, Lung, and Blood Institute]], US National Science Foundation, Foundation Fighting Blindness, [[British Heart Foundation]] (BHF), Wellcome Trust, Volkswagen Foundation, United States –Israel.
* He has served on scientific review panels for American Heart Association, [[National Heart, Lung, and Blood Institute]], US National Science Foundation, Foundation Fighting Blindness, [[British Heart Foundation]] (BHF), Wellcome Trust, Volkswagen Foundation, United States –Israel.
== Selected bibliography ==

* Constitutive activity in the angiotensin II type 1 receptor: discovery and applications.<ref>{{Citation|last=Unal|first=Hamiyet|title=Constitutive Activity in the Angiotensin II Type 1 Receptor|date=2014|url=https://linkinghub.elsevier.com/retrieve/pii/B9780124171978000067|work=Advances in Pharmacology|volume=70|pages=155–174|publisher=Elsevier|language=en|doi=10.1016/b978-0-12-417197-8.00006-7|isbn=978-0-12-417197-8|pmc=PMC7500102|pmid=24931196|access-date=2020-12-07|last2=Karnik|first2=Sadashiva S.}}</ref>
* Angiotensin II type 1 and type 2 receptors bind angiotensin II through different epitope recognition.<ref>{{Cite journal|last=Miura|first=S.|last2=Karnik|first2=S. S.|title=Angiotensin II type 1 and type 2 receptors bind angiotensin II through different types of epitope recognition|url=https://pubmed.ncbi.nlm.nih.gov/10100078|journal=Journal of Hypertension|volume=17|issue=3|pages=397–404|doi=10.1097/00004872-199917030-00013|issn=0263-6352|pmid=10100078|via=}}</ref>
* Ligand-independent signals from the angiotensin II type-2 receptor induce apoptosis.<ref>{{Cite journal|last=Miura|first=S.|last2=Karnik|first2=S. S.|date=2000-08-01|title=Ligand-independent signals from angiotensin II type 2 receptor induce apoptosis|url=https://pubmed.ncbi.nlm.nih.gov/10921883|journal=The EMBO journal|volume=19|issue=15|pages=4026–4035|doi=10.1093/emboj/19.15.4026|issn=0261-4189|pmc=PMC306598|pmid=10921883}}</ref>
* Side-chain substitution within angiotensin II reveal different requirements for signaling, internalization and phosphorylation of type 1A angiotensin receptors.<ref>{{Cite journal|last=Holloway|first=Alice C.|last2=Qian|first2=Hongwei|last3=Pipolo|first3=Luisa|last4=Ziogas|first4=James|last5=Miura|first5=Shin-ichiro|last6=Karnik|first6=Sadashiva|last7=Southwell|first7=Bridget R.|last8=Lew|first8=Michael J.|last9=Thomas|first9=Walter G.|title=Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors|url=https://pubmed.ncbi.nlm.nih.gov/11901215|journal=Molecular Pharmacology|volume=61|issue=4|pages=768–777|doi=10.1124/mol.61.4.768|issn=0026-895X|pmid=11901215|via=}}</ref>
* Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2.<ref>{{Cite journal|last=Wei|first=Huijun|last2=Ahn|first2=Seungkirl|last3=Shenoy|first3=Sudha K.|last4=Karnik|first4=Sadashiva S.|last5=Hunyady|first5=László|last6=Luttrell|first6=Louis M.|last7=Lefkowitz|first7=Robert J.|date=2003-09-16|title=Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2|url=https://pubmed.ncbi.nlm.nih.gov/12949261|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=100|issue=19|pages=10782–10787|doi=10.1073/pnas.1834556100|issn=0027-8424|pmc=PMC196880|pmid=12949261}}</ref>
* Structure of the Angiotensin receptor revealed by serial femtosecond crystallography.<ref>{{Cite journal|last=Zhang|first=Haitao|last2=Unal|first2=Hamiyet|last3=Gati|first3=Cornelius|last4=Han|first4=Gye Won|last5=Liu|first5=Wei|last6=Zatsepin|first6=Nadia A.|last7=James|first7=Daniel|last8=Wang|first8=Dingjie|last9=Nelson|first9=Garrett|last10=Weierstall|first10=Uwe|last11=Sawaya|first11=Michael R.|date=2015-05-07|title=Structure of the Angiotensin receptor revealed by serial femtosecond crystallography|url=https://pubmed.ncbi.nlm.nih.gov/25913193|journal=Cell|volume=161|issue=4|pages=833–844|doi=10.1016/j.cell.2015.04.011|issn=1097-4172|pmc=4427029|pmid=25913193}}</ref>
* Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor.<ref>{{Cite journal|last=Zhang|first=Haitao|last2=Unal|first2=Hamiyet|last3=Desnoyer|first3=Russell|last4=Han|first4=Gye Won|last5=Patel|first5=Nilkanth|last6=Katritch|first6=Vsevolod|last7=Karnik|first7=Sadashiva S.|last8=Cherezov|first8=Vadim|last9=Stevens|first9=Raymond C.|date=2015-12-04|title=Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor|url=https://pubmed.ncbi.nlm.nih.gov/26420482|journal=The Journal of Biological Chemistry|volume=290|issue=49|pages=29127–29139|doi=10.1074/jbc.M115.689000|issn=1083-351X|pmc=4705918|pmid=26420482}}</ref>
* Divergent Spatiotemporal Interaction of Angiotensin Receptor Blocking Drugs with Angiotensin Type 1 Receptor.<ref>{{Cite journal|last=Singh|first=Khuraijam Dhanachandra|last2=Unal|first2=Hamiyet|last3=Desnoyer|first3=Russell|last4=Karnik|first4=Sadashiva S.|title=Divergent Spatiotemporal Interaction of Angiotensin Receptor Blocking Drugs with Angiotensin Type 1 Receptor|url=https://pubmed.ncbi.nlm.nih.gov/29195045|journal=Journal of Chemical Information and Modeling|volume=58|issue=1|pages=182–193|doi=10.1021/acs.jcim.7b00424|issn=1549-960X|pmc=6058968|pmid=29195045|via=}}</ref>
* Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 <nowiki>&</nowiki> 1.<ref>{{Cite journal|last=Karnik|first=S. S.|last2=Khorana|first2=H. G.|date=1990-10-15|title=Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187|url=https://pubmed.ncbi.nlm.nih.gov/2145276|journal=The Journal of Biological Chemistry|volume=265|issue=29|pages=17520–17524|issn=0021-9258|pmid=2145276}}</ref>
* Cysteine residues 110 and 187 are required for the formation of correct tertiary structure in bovine rhodopsin.<ref>{{Cite journal|last=Tremblay|first=Mark S|last2=LeBlanc|first2=Allana G|last3=Kho|first3=Michelle E|last4=Saunders|first4=Travis J|last5=Larouche|first5=Richard|last6=Colley|first6=Rachel C|last7=Goldfield|first7=Gary|last8=Gorber|first8=Sarah Connor|date=2011-09-21|title=Systematic review of sedentary behaviour and health indicators in school-aged children and youth|url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3186735/|journal=The International Journal of Behavioral Nutrition and Physical Activity|volume=8|pages=98|doi=10.1186/1479-5868-8-98|issn=1479-5868|pmc=3186735|pmid=21936895}}</ref>
* International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli.


== References ==
== References ==

Revision as of 05:32, 8 December 2020

Sadashiva (Sadu) Karnik is an Indian-born molecular biologist, currently a Professor in the Molecular Medicine Department of Cleveland Clinic Lerner College of Medicine at Case Western Reserve University. He is also a Full-Staff academician and the head of the Karnik-lab at the Lerner Research Institute of Cleveland Clinic.[1]

He is known for his work on structure-function studies of G protein-coupled receptor (GPCRs), specifically for his early research on disulfide bond driven folding of GPCRs and for pioneering work on the analysis of Angiotensin receptor’structure, signaling and development of drug-like ligands.[2]

Early life and education

Sadu Karnik earned a B.Sc. degree in Botany, Zoology and Chemistry from Sri Poornaprajna College, Udupi in 1973 and a M.Sc. degree in Clinical Biochemistry by research from Kasturba Medical College, Manipal. He entered the Indian Institute of Science, Department of Microbiology and Cell Biology Bengaluru in 1976 for doctoral studies on Mycobacteriophage. His post-doctoral studies were on Bacteriophage Qβ at the laboratory of molecular biologist Martin Billetter of the ETH Institute for Molecular Biology, University of Zurich, Switzerland.[3] He later joined the laboratory of Nobel laureate, Har Gobind Khorana at Massachusetts Institute of Technology to study disulfide-bonding in integral membrane proteins. He became a naturalized citizen of USA in 1995.[4]

Professional and academic career

Sadu Karnik started his independent laboratory at the Cleveland Clinic research foundation as an assistant staff studying Angiotensin receptor molecular biology and was promoted to full-staff in 2002. In 2003, he became Professor (non-tenure track) of Molecular Medicine, in the newly accredited Cleveland Clinic Lerner College of Medicine (CCLCM) at Case Western Reserve University, Cleveland, OH, USA.[5] His research programs are supported by National Institutes of Health funding continuously for the past 25 years.[6]

Research

The Karnik-lab is known for first reporting of constitutive activation, atypical G protein coupling,[7] biased ligand signaling,[8] X-ray structure of antihypertensive drug bound angiotensin receptor,[9] and structure-based allosteric ligand of Angiotensin receptors.[10] These discoveries facilitated the development of novel transgenic models of cardiovascular diseases, β-arrestin biased agonists,[11] next generation antihypertensive drugs and novel structures of GPCRs.[12] His current research is aimed at developing novel allosteric ligand drugs for intervention in Preeclampsia due to autoimmunity and Hyperaldosteronism due to adrenal hyperplasia. In 1986 Sadu Karnik and colleagues at MIT reported that production of a functional, light sensing-state of rhodopsin depended on formation of a unique disulfide bond that is conserved in >90% GPCRs.[13][14] The Karnik-lab at Cleveland Clinic extended this finding to other hormone and neurotransmitter GPCRs including β-adrenegic and Angiotensin Receptors.

Awards honors, and professional activities

Sadu Karnik won several fellowships including the Junior Research Fellowship of the Indian Institute of Science, Department of Science Technology (India) Senior Research Fellowship and the Swiss National Science Foundation Fellowship.[15]

  • In 1981 he was awarded the Gold medal for the best PhD thesis in biological sciences at the Indian Institute of Science.
  • Swiss National Science Foundation Fellowship
  • In 1999, he was awarded Established Investigator of American Heart Association.
  • In 2001 he earned the Astra-Zeneca Basic Research Award
  • He won the Lerner Research Institute of Cleveland Clinic’s Innovator Research Awards in 2007 and 2017, the Service Excellence Awards in 2008 and 2015 and Outstanding Mentor Award (2012).
  • In 2013 he became Chair of IUPHAR Committee on Angiotensin Receptors and continues his service in that position.
  • He has served on scientific review panels for American Heart Association, National Heart, Lung, and Blood Institute, US National Science Foundation, Foundation Fighting Blindness, British Heart Foundation (BHF), Wellcome Trust, Volkswagen Foundation, United States –Israel.

Selected bibliography

  • Constitutive activity in the angiotensin II type 1 receptor: discovery and applications.[16]
  • Angiotensin II type 1 and type 2 receptors bind angiotensin II through different epitope recognition.[17]
  • Ligand-independent signals from the angiotensin II type-2 receptor induce apoptosis.[18]
  • Side-chain substitution within angiotensin II reveal different requirements for signaling, internalization and phosphorylation of type 1A angiotensin receptors.[19]
  • Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2.[20]
  • Structure of the Angiotensin receptor revealed by serial femtosecond crystallography.[21]
  • Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor.[22]
  • Divergent Spatiotemporal Interaction of Angiotensin Receptor Blocking Drugs with Angiotensin Type 1 Receptor.[23]
  • Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 & 1.[24]
  • Cysteine residues 110 and 187 are required for the formation of correct tertiary structure in bovine rhodopsin.[25]
  • International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli.

References

  1. ^ "Lerner Research Institute". www.lerner.ccf.org. Retrieved 2020-12-07.
  2. ^ Singh, Khuraijam Dhanachandra; Karnik, Sadashiva S. "Angiotensin Receptors: Structure, Function, Signaling and Clinical Applications". Journal of Cell Signaling. 1 (2). doi:10.4172/jcs.1000111. PMC 4976824. PMID 27512731.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ Karnik, S.; Billeter, M. "The lysis function of RNA bacteriophage Qbeta is mediated by the maturation (A2) protein". The EMBO Journal. 2 (9): 1521–1526. doi:10.1002/j.1460-2075.1983.tb01617.x.
  4. ^ Karnik, Sadashiva; Subramaniam, Sriram (2012-12-01). "There is no overkill in biochemistry". Resonance. 17 (12): 1157–1164. doi:10.1007/s12045-012-0132-6. ISSN 0973-712X.
  5. ^ "Lerner Research Institute". www.lerner.ccf.org. Retrieved 2020-12-08.
  6. ^ "NIH Awards by Location and Organization - NIH Research Portfolio Online Reporting Tools (RePORT)". www.report.nih.gov. Retrieved 2020-12-08.
  7. ^ Tirupula, Kalyan C.; Desnoyer, Russell; Speth, Robert C.; Karnik, Sadashiva S. (2014). "Atypical signaling and functional desensitization response of MAS receptor to peptide ligands". PloS One. 9 (7): e103520. doi:10.1371/journal.pone.0103520. ISSN 1932-6203. PMC 4113456. PMID 25068582.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  8. ^ "Biased Ligands - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2020-12-08.
  9. ^ Singh, Khuraijam Dhanachandra; Unal, Hamiyet; Desnoyer, Russell; Karnik, Sadashiva S. "Divergent Spatiotemporal Interaction of Angiotensin Receptor Blocking Drugs with Angiotensin Type 1 Receptor". Journal of Chemical Information and Modeling. 58 (1): 182–193. doi:10.1021/acs.jcim.7b00424. ISSN 1549-960X. PMC 6058968. PMID 29195045.
  10. ^ Zhang, Haitao; Unal, Hamiyet; Gati, Cornelius; Han, Gye Won; Liu, Wei; Zatsepin, Nadia A.; James, Daniel; Wang, Dingjie; Nelson, Garrett; Weierstall, Uwe; Sawaya, Michael R. "Structure of the Angiotensin Receptor Revealed by Serial Femtosecond Crystallography". Cell. 161 (4): 833–844. doi:10.1016/j.cell.2015.04.011. ISSN 0092-8674. PMC 4427029. PMID 25913193. {{cite journal}}: no-break space character in |first11= at position 8 (help); no-break space character in |first4= at position 4 (help); no-break space character in |first6= at position 6 (help)CS1 maint: PMC format (link)
  11. ^ Zanaty, Mario; Seara, Fernando A. C.; Nakagawa, Pablo; Deng, Guorui; Mathieu, Natalia M.; Balapattabi, Kirthikaa; Karnik, Sadashiva S.; Grobe, Justin L.; Sigmund, Curt D. (2020-11-30). "β-Arrestin-Biased Agonist Targeting the Brain AT1R (Angiotensin II Type 1 Receptor) Increases Aversion to Saline and Lowers Blood Pressure in Deoxycorticosterone Acetate-Salt Hypertension". Hypertension (Dallas, Tex.: 1979): HYPERTENSIONAHA12015793. doi:10.1161/HYPERTENSIONAHA.120.15793. ISSN 1524-4563. PMID 33249862.
  12. ^ Singh, Khuraijam Dhanachandra; Unal, Hamiyet; Desnoyer, Russell; Karnik, Sadashiva S. "Divergent Spatiotemporal Interaction of Angiotensin Receptor Blocking Drugs with Angiotensin Type 1 Receptor". Journal of Chemical Information and Modeling. 58 (1): 182–193. doi:10.1021/acs.jcim.7b00424. ISSN 1549-960X. PMC 6058968. PMID 29195045.
  13. ^ Unal, Hamiyet; Jagannathan, Rajaganapathi; Bhatnagar, Anushree; Tirupula, Kalyan; Desnoyer, Russell; Karnik, Sadashiva S. (2013-01-04). "Long Range Effect of Mutations on Specific Conformational Changes in the Extracellular Loop 2 of Angiotensin II Type 1 Receptor". Journal of Biological Chemistry. 288 (1): 540–551. doi:10.1074/jbc.M112.392514. ISSN 0021-9258. PMC 3537051. PMID 23139413.{{cite journal}}: CS1 maint: PMC format (link) CS1 maint: unflagged free DOI (link)
  14. ^ Karnik, S; Gogonea, C; Patil, S; Saad, Y; Takezako, T (2003-11). "Activation of G-protein-coupled receptors: a common molecular mechanism". Trends in Endocrinology and Metabolism. 14 (9): 431–437. doi:10.1016/j.tem.2003.09.007. {{cite journal}}: Check date values in: |date= (help)
  15. ^ "Speaker Biographies". Drug Discovery Chemistry. Retrieved 2020-12-08.
  16. ^ Unal, Hamiyet; Karnik, Sadashiva S. (2014), "Constitutive Activity in the Angiotensin II Type 1 Receptor", Advances in Pharmacology, vol. 70, Elsevier, pp. 155–174, doi:10.1016/b978-0-12-417197-8.00006-7, ISBN 978-0-12-417197-8, PMC 7500102, PMID 24931196, retrieved 2020-12-07{{citation}}: CS1 maint: PMC format (link)
  17. ^ Miura, S.; Karnik, S. S. "Angiotensin II type 1 and type 2 receptors bind angiotensin II through different types of epitope recognition". Journal of Hypertension. 17 (3): 397–404. doi:10.1097/00004872-199917030-00013. ISSN 0263-6352. PMID 10100078.
  18. ^ Miura, S.; Karnik, S. S. (2000-08-01). "Ligand-independent signals from angiotensin II type 2 receptor induce apoptosis". The EMBO journal. 19 (15): 4026–4035. doi:10.1093/emboj/19.15.4026. ISSN 0261-4189. PMC 306598. PMID 10921883.{{cite journal}}: CS1 maint: PMC format (link)
  19. ^ Holloway, Alice C.; Qian, Hongwei; Pipolo, Luisa; Ziogas, James; Miura, Shin-ichiro; Karnik, Sadashiva; Southwell, Bridget R.; Lew, Michael J.; Thomas, Walter G. "Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors". Molecular Pharmacology. 61 (4): 768–777. doi:10.1124/mol.61.4.768. ISSN 0026-895X. PMID 11901215.
  20. ^ Wei, Huijun; Ahn, Seungkirl; Shenoy, Sudha K.; Karnik, Sadashiva S.; Hunyady, László; Luttrell, Louis M.; Lefkowitz, Robert J. (2003-09-16). "Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2". Proceedings of the National Academy of Sciences of the United States of America. 100 (19): 10782–10787. doi:10.1073/pnas.1834556100. ISSN 0027-8424. PMC 196880. PMID 12949261.{{cite journal}}: CS1 maint: PMC format (link)
  21. ^ Zhang, Haitao; Unal, Hamiyet; Gati, Cornelius; Han, Gye Won; Liu, Wei; Zatsepin, Nadia A.; James, Daniel; Wang, Dingjie; Nelson, Garrett; Weierstall, Uwe; Sawaya, Michael R. (2015-05-07). "Structure of the Angiotensin receptor revealed by serial femtosecond crystallography". Cell. 161 (4): 833–844. doi:10.1016/j.cell.2015.04.011. ISSN 1097-4172. PMC 4427029. PMID 25913193.
  22. ^ Zhang, Haitao; Unal, Hamiyet; Desnoyer, Russell; Han, Gye Won; Patel, Nilkanth; Katritch, Vsevolod; Karnik, Sadashiva S.; Cherezov, Vadim; Stevens, Raymond C. (2015-12-04). "Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor". The Journal of Biological Chemistry. 290 (49): 29127–29139. doi:10.1074/jbc.M115.689000. ISSN 1083-351X. PMC 4705918. PMID 26420482.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  23. ^ Singh, Khuraijam Dhanachandra; Unal, Hamiyet; Desnoyer, Russell; Karnik, Sadashiva S. "Divergent Spatiotemporal Interaction of Angiotensin Receptor Blocking Drugs with Angiotensin Type 1 Receptor". Journal of Chemical Information and Modeling. 58 (1): 182–193. doi:10.1021/acs.jcim.7b00424. ISSN 1549-960X. PMC 6058968. PMID 29195045.
  24. ^ Karnik, S. S.; Khorana, H. G. (1990-10-15). "Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187". The Journal of Biological Chemistry. 265 (29): 17520–17524. ISSN 0021-9258. PMID 2145276.
  25. ^ Tremblay, Mark S; LeBlanc, Allana G; Kho, Michelle E; Saunders, Travis J; Larouche, Richard; Colley, Rachel C; Goldfield, Gary; Gorber, Sarah Connor (2011-09-21). "Systematic review of sedentary behaviour and health indicators in school-aged children and youth". The International Journal of Behavioral Nutrition and Physical Activity. 8: 98. doi:10.1186/1479-5868-8-98. ISSN 1479-5868. PMC 3186735. PMID 21936895.{{cite journal}}: CS1 maint: unflagged free DOI (link)