Jump to content

Adenosine deaminase z-alpha domain

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Citation bot (talk | contribs) at 20:50, 18 August 2021 (Add: doi-access, bibcode. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 215/1705). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Adenosine deaminase z-alpha domain
Crystal structure of the zb domain from the RNA editing enzyme ADAR1
Identifiers
Symbolz-alpha
PfamPF02295
Pfam clanCL0123
InterProIPR000607
SCOP21qgp / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

In molecular biology, the protein domain Adenosine deaminase z-alpha domain refers to an evolutionary conserved protein domain. This family consists of the N-terminus and thus the z-alpha domain of double-stranded RNA-specific adenosine deaminase (ADAR), an RNA-editing enzyme. The z-alpha domain is a Z-DNA binding domain, and binding of this region to B-DNA has been shown to be disfavoured by steric hindrance.[1]

Function

[edit]

Double-stranded RNA-specific adenosine deaminase (EC) converts multiple adenosines to inosines and creates I/U mismatched base pairs in double-helical RNA substrates without apparent sequence specificity. DRADA has been found to modify adenosines in AU-rich regions more frequently, probably due to the relative ease of melting A/U base pairs compared to G/C base pairs. The protein functions to modify viral RNA genomes, and may be responsible for hypermutation of certain negative-stranded viruses. DRADA edits the mRNAs for the glutamate receptor subunits by site-selective adenosine deamination. The DRADA repeat is also found in viral E3 proteins, which contain a double-stranded RNA-binding domain.

Examples

[edit]

Genes encoding proteins containing this domain include ADAR and ZBP1.

References

[edit]
  1. ^ Schade M, Turner CJ, Kühne R, Schmieder P, Lowenhaupt K, Herbert A, Rich A, Oschkinat H (October 1999). "The solution structure of the Zalpha domain of the human RNA editing enzyme ADAR1 reveals a prepositioned binding surface for Z-DNA". Proc. Natl. Acad. Sci. U.S.A. 96 (22): 12465–70. Bibcode:1999PNAS...9612465S. doi:10.1073/pnas.96.22.12465. PMC 22950. PMID 10535945.
This article incorporates text from the public domain Pfam and InterPro: IPR000607