Cenomanian-Turonian boundary event

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 82.10.107.84 (talk) at 18:21, 16 February 2014. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Cenomanian-Turonian boundary event, also known as the Cenomanian-Turonian extinction event, the Cenomanian-Turonian anoxic event, and referred to in Europe as the Bonarelli Event,[1] was the latter of two anoxic extinction events early in the Cretaceous period. The event occurred approximately 91.5 ± 8.6 million years ago,[2] and brought about the extinction of the Spinosauridae, Pliosauridae, and possibly Ichthyosauria; though coracoids of Maastrichtian age may belong to ichthyosaurs, indicating the survival of the group until the latest Cretaceous.[3] Other animals lost some diversity as well. Although the cause is still uncertain, the result starved the Earth's oceans of oxygen for nearly half a million years, causing the extinction of approximately 27 percent of marine invertebrates.[4] This global environmental disturbance increased atmospheric and oceanic temperatures. Boundary sediments show an enrichment of trace elements, and contain elevated δ13C values.[5]

One possible cause was sub-oceanic volcanism occurring approximately 500,000 years earlier. During that period, the rate of crustal production reached its highest level for 100 million years. This was largely caused by the widespread melting of hot mantle plumes under the oceans at the base of the lithosphere. This resulted in the thickening of the oceanic crust in the Pacific and Indian Oceans. This volcanism would have produced large quantities of carbon dioxide into the atmosphere, leading to global warming. Within the oceans, the emission of SO, H2S, CO, and halogens would have increased the acidity of the water, causing the dissolution of carbonate, and a further release of carbon dioxide. When the volcanic activity declined, this run-away greenhouse effect would have likely been put into reverse. The increased CO2 content of the oceans could have increased organic productivity in the ocean surface waters. The consumption of this newly abundant organic life by aerobic bacteria would produce anoxia and mass extinction.[4] The resulting elevated levels of carbon burial would account for the black shale deposition in the ocean basins.[5]

See also

References

  1. ^ Biostratigraphy of the Cenomanian-Turonian boundary in the Eastern Carpathians (Dâmboviţa Valley): preliminary observations
  2. ^ "U-Pb and Re-Os geochronology of the Aptian/Albian and Cenomanian/Turonian stage boundaries : implications for timescale calibration, osmium seawater composition and Re-Os systematics in organic-rich sediments - NERC Open Research Archive". Nora.nerc.ac.uk. Retrieved 2010-09-13.
  3. ^ Sven Sachs, Jack A. Grant‐Mackie, Journal of the Royal Society of New Zealand, 2003. An ichthyosaur fragment from the Cretaceous of Northland, New Zealand. 33 (1), 307 - 314 CrossRef.
  4. ^ a b "Submarine eruption bled Earth's oceans of oxygen - environment - 16 July 2008". New Scientist. Retrieved 2010-09-13.
  5. ^ a b "Oceanic plateau formation: A cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary? | Journal of the Geological Society | Find Articles at BNET". Findarticles.com. Retrieved 2010-09-13.

External links