Jump to content

Korarchaeota

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Waltzingmogumogupeach (talk | contribs) at 05:02, 4 November 2022. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Korarchaeota
Scanning electron micrograph of the Obsidian Pool enrichment culture, showing Korarchaeota.
Scientific classification
Domain:
Kingdom:
Superphylum:
Phylum:
"Korarchaeota"

Barns et al. 1996
Class:
"Korarchaeia"

Rinke et al. 2020[1]
Order:
"Korarchaeales"

Petitjean et al. 2015[2]
Family:
"Korarchaeaceae"

Rinke et al. 2020
Species
Synonyms
  • "Xenarchaea"
  • "Xenarchaeota"

In taxonomy, the Korarchaeota are a phylum of the Archaea.[3] The name is derived from the Greek noun koros or kore, meaning young man or young woman, and the Greek adjective archaios which means ancient.[4] They are also known as Xenarchaeota.

Taxonomy

Korarchaeota is regarded as a phylum, which itself is part of the archaeal TACK superphylum which encompasses Thaumarchaeota (now Nitrososphaerota), "Aigarchaeota", Crenarchaeota (now Thermoproteota), and "Korarchaeota".[5]

Species

Phylogeny

Analysis of their 16S rRNA gene sequences suggests that they are a deeply branching lineage that does not belong to the main archaeal groups, Thermoproteota and Euryarchaeota.[6] Analysis of the genome of one korarchaeote that was enriched from a mixed culture revealed a number of both Crenarchaeota- and Euryarchaeota-like features and supports the hypothesis of a deep-branching ancestry.[7]

Reference species

The strain Korarchaeum cryptofilum was cultivated in an enrichment culture from a hot spring in Yellowstone National Park in USA 2008.[7] The cells are long and needleshaped, which gave the species its name, alluding to its "cryptical filaments". This organism lacks the genes for purine nucleotide biosynthesis and thus relies on environmental sources to meet its purine requirements.[8]

Ecology

The Korarchaeota have only been found in hydrothermal environments. They appear to have diversified at different phylogenetic levels according to temperature, salinity (freshwater or seawater), and/or geography.[9] Korarchaeota have been found in nature in only low abundance.[9][10][11]

Each of these six hot springs (from top left, clockwise: Uzon4, Uzon7, Uzon8, Uzon9, Mut11, Mut13) in Kamchatka were found to contain Korarchaeota.
Each of these six hot springs (clockwise from top left: Uzon4, Uzon7, Uzon8, Uzon9, Mut11, Mut13) in Kamchatka was found to contain Korarchaeota.[9]

See also

References

  1. ^ Resolving widespread incomplete and uneven archaeal classifications based on a rank-normalized genome-based taxonomy
  2. ^ Rooting the Domain Archaea by Phylogenomic Analysis Supports the Foundation of the New Kingdom Proteoarchaeota
  3. ^ See the NCBI webpage on Korarchaeota. Data extracted from the "NCBI taxonomy resources". National Center for Biotechnology Information. Retrieved 2007-03-19.
  4. ^ Elkins, JG; Podar, M; Graham, DE; et al. (June 2008). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proc. Natl. Acad. Sci. U.S.A. 105 (23): 8102–7. Bibcode:2008PNAS..105.8102E. doi:10.1073/pnas.0801980105. PMC 2430366. PMID 18535141.
  5. ^ Guy L, Ettema TJ (2011). "The archaeal 'TACK' superphylum and the origin of eukaryotes". Trends Microbiol. 19 (12): 580–7. doi:10.1016/j.tim.2011.09.002. PMID 22018741.
  6. ^ Barns SM, Delwiche CF, Palmer JD, Pace NR (August 1996). "Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences". Proc. Natl. Acad. Sci. USA. 93 (17): 9188–93. Bibcode:1996PNAS...93.9188B. doi:10.1073/pnas.93.17.9188. PMC 38617. PMID 8799176.
  7. ^ a b Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlund BP, Brochier-Armanet C, Kunin V, Anderson I, Lapidus A, Goltsman E, Barry K, Koonin EV, Hugenholtz P, Kyrpides N, Wanner G, Richardson P, Keller M, Stetter KO (July 2008). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proc. Natl. Acad. Sci. USA. 105 (1): 8805–6. Bibcode:2008PNAS..105.8102E. doi:10.1073/pnas.0801980105. PMC 2430366. PMID 18535141.
  8. ^ Brown, Anne M.; Hoopes, Samantha L.; White, Robert H.; Sarisky, Catherine A. (2011-12-14). "Purine biosynthesis in archaea: variations on a theme". Biology Direct. 6: 63. doi:10.1186/1745-6150-6-63. ISSN 1745-6150. PMC 3261824. PMID 22168471.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  9. ^ a b c Auchtung TA, Shyndriayeva G, Cavanaugh CM (2011). "16S rRNA phylogenetic analysis and quantification of Korarchaeota indigenous to the hot springs of Kamchatka, Russia". Extremophiles. 15 (1): 105–116. doi:10.1007/s00792-010-0340-5. PMID 21153671. S2CID 12091232.
  10. ^ Reigstad LJ, Jorgensen SL, Schleper C (2010). "Diversity is and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka jamaica". ISME J. 4 (3): 346–56. doi:10.1038/ismej.2009.126. PMID 19956276.
  11. ^ Auchtung, Thomas Andrew (2007). Ecology of the hydrothermal candidate archaeal division, Korarchaeota (PhD thesis). Harvard University.

Further reading

Scientific journals

Scientific books

Scientific databases

Template:Taxonomic references

Template:Taxonomic links