Teraflops Research Chip
General information | |
---|---|
Launched | 2006 |
Designed by | Intel Tera-Scale Computing Research Program |
Performance | |
Max. CPU clock rate | 5.67 GHz |
Data width | 38-bit |
Architecture and classification | |
Instructions | 96-bit VLIW |
Physical specifications | |
Transistors |
|
Cores |
|
Socket |
|
History | |
Successor | Xeon Phi |
Intel Teraflops Research Chip (codenamed Polaris) is a research manycore processor containing 80 cores, using a network-on-chip architecture, developed by Intel's Tera-Scale Computing Research Program.[1] It was manufactured using a 65 nm CMOS process with eight layers of copper interconnect and contains 100 million transistors on a 275 mm2 die.[2][3][4] Its design goal was to demonstrate a modular architecture capable of a sustained performance of 1.0 TFLOPS while dissipating less than 100 W.[3] Research from the project was later incorporated into Xeon Phi. The technical lead of the project was Sriram R. Vangal.[4]
The processor was initially presented at the Intel Developer Forum on September 26, 2006[5] and officially announced on February 11, 2007.[6] A working chip was presented at the 2007 IEEE International Solid-State Circuits Conference, alongside technical specifications.[2]
Architecture
The chip consists of a 10x8 2D mesh network of cores and nominally operates at 4 GHz.[nb 1] Each core, called a tile (3 mm2), contains a processing engine and a 5-port wormhole-switched router (0.34 mm2) with mesochronous interfaces, with a bandwidth of 80 GB/s and latency of 1.25 ns at 4 GHz.[2] The processing engine in each tile contains two independent, 9-stage pipeline, single-precision floating-point multiplyaccumulator (FPMAC) units, 3 KB of single-cycle instruction memory and 2 KB of data memory.[3] Each FPMAC unit is capable of performing 2 single-precision floating-point operations per cycle. Each tile has thus an estimated peak performance of 16 GFLOPS at the standard configuration of 4 GHz. A 96-bit very long instruction word (VLIW) encodes up to eight operations per cycle.[3] The custom instruction set includes instructions to send and receive packets into/from the chip's network and well as instructions for sleeping and waking a particular tile.[4] Underneath each tile, a 256 KB SRAM module (codenamed Freya) was 3D stacked, thus bringing memory nearer to the processor to increase overall memory bandwidth to 1 TB/s, at the expense of higher cost, thermal stress and latency, and a small total capacity of 20 MB.[7] The network of Polaris was shown to have a bisection bandwidth of 1.6 Tbit/s at 3.16 GHz and 2.92 Tbit/s at 5.67 GHz.[8]
Other prominent features of the Teraflops Research chip include its fine-grained power management with 21 independent sleep regions on a tile and dynamic tile sleep, and very high energy efficiency with 27 GFLOPS/W theoretical peak at 0.6 V and 19.4 GFLOPS/W actual for stencil at 0.75 V.[4][9]
Instruction type | Latency (cycles) |
---|---|
FPMAC | 9 |
LOAD/STORE | 2 |
SEND/RECEIVE | 2 |
JUMP/BRANCH | 1 |
STALL/WFD | ? |
SLEEP/WAKE | 6 |
Application | count | Active tiles | ||
---|---|---|---|---|
Stencil | 358K | 1.00 | 73.3% | 80 |
SGEMM: | 2.63M | 0.51 | 37.5% | 80 |
Spreadsheet | 64.2K | 0.45 | 33.2% | 80 |
2D FFT | 196K | 0.02 | 2.73% | 64 |
[nb 4] | [nb 5] | Power[nb 6] | Source | ||
---|---|---|---|---|---|
0.60 V | 1.0 GHz | 0.32 TFLOPS | 11 W | 110 °C | [2] |
0.675 V | 1.0 GHz | 0.32 TFLOPS | 15.6 W | 80 °C | [4] |
0.70 V | 1.5 GHz | 0.48 TFLOPS | 25 W | 110 °C | [2] |
0.70 V | 1.35 GHz | 0.43 TFLOPS | 18 W | 80 °C | [4] |
0.75 V | 1.6 GHz | 0.51 TFLOPS | 21 W | 80 °C | [4] |
0.80 V | 2.1 GHz | 0.67 TFLOPS | 42 W | 110 °C | [2] |
0.80 V | 2.0 GHz | 0.64 TFLOPS | 26 W | 80 °C | [4] |
0.85 V | 2.4 GHz | 0.77 TFLOPS | 32 W | 80 °C | [4] |
0.90 V | 2.6 GHz | 0.83 TFLOPS | 70 W | 110 °C | [2] |
0.90 V | 2.85 GHz | 0.91 TFLOPS | 45 W | 80 °C | [4] |
0.95 V | 3.16 GHz | 1.0 TFLOPS | 62 W | 80 °C | [4] |
1.00 V | 3.13 GHz | 1.0 TFLOPS | 98 W | 110 °C | [2] |
1.00 V | 3.8 GHz | 1.22 TFLOPS | 78 W | 80 °C | [4] |
1.05 V | 4.2 GHz | 1.34 TFLOPS | 82 W | 80 °C | [4] |
1.10 V | 3.5 GHz | 1.12 TFLOPS | 135 W | 110 °C | [2] |
1.10 V | 4.5 GHz | 1.44 TFLOPS | 105 W | 80 °C | [4] |
1.15 V | 4.8 GHz | 1.54 TFLOPS | 128 W | 80 °C | [4] |
1.20 V | 4.0 GHz | 1.28 TFLOPS | 181 W | 110 °C | [2] |
1.20 V | 5.1 GHz | 1.63 TFLOPS | 152 W | 80 °C | [4] |
1.25 V | 5.3 GHz | 1.70 TFLOPS | 165 W | 80 °C | [4] |
1.30 V | 4.4 GHz | 1.39 TFLOPS | ? | 110 °C | [2] |
1.30 V | 5.5 GHz | 1.76 TFLOPS | 210 W | 80 °C | [4] |
1.35 V | 5.67 GHz | 1.81 TFLOPS | 230 W | 80 °C | [4] |
1.40 V | 4.8 GHz | 1.52 TFLOPS | ? | 110 °C | [2] |
Issues
Intel aimed to help software development for the new exotic architecture by creating a new programming model, especially for the chip, called Ct. The model never gained the following Intel hoped for and has been eventually incorporated into Intel Array Building Blocks, a now defunct C++ library.
See also
Notes
- ^ Though the chip was later shown by Intel to run as high as 5.67 GHz.
- ^ At 1.07 V and 4.27 GHz.
- ^ All measurements present performance with all 80 cores active.
- ^ Substantially higher frequencies at the same voltages (compared to the initial ISSCC report) were attained in 2008 with use of a custom cooling solution.
- ^ Values in italic were extrapolated by , where the maximal frequency was manually extracted from plots and are thus only approximate in their nature.
- ^ Values in italic were manualy extracted from plots and are thus only approximate in their nature.
References
- ^ Intel Corporation. "Teraflops Research Chip". Archived from the original on July 22, 2010.
- ^ a b c d e f g h i j k l Vangal, Sriram; Howard, Jason; Ruhl, Gregory; Dighe, Saurabh; Wilson, Howard; Tschanz, James; Finan, David; Iyer, Priya; Singh, Arvind; Jacob, Tiju; Jain, Shailendra (2007). "An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS". 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers: 98–589. doi:10.1109/ISSCC.2007.373606. ISBN 978-1-4244-0852-8. S2CID 20065641.
- ^ a b c d Peh, Li-Shiuan; Keckler, Stephen W.; Vangal, Sriram (2009), Keckler, Stephen W.; Olukotun, Kunle; Hofstee, H. Peter (eds.), "On-Chip Networks for Multicore Systems", Multicore Processors and Systems, Springer US, pp. 35–71, Bibcode:2009mps..book...35P, doi:10.1007/978-1-4419-0263-4_2, ISBN 978-1-4419-0262-7, retrieved 2020-05-14
- ^ a b c d e f g h i j k l m n o p q r s t u Vangal, S.R.; Howard, J.; Ruhl, G.; Dighe, S.; Wilson, H.; Tschanz, J.; Finan, D.; Singh, A.; Jacob, T.; Jain, S.; Erraguntla, V. (2008). "An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS". IEEE Journal of Solid-State Circuits. 43 (1): 29–41. Bibcode:2008IJSSC..43...29V. doi:10.1109/JSSC.2007.910957. ISSN 0018-9200. S2CID 15672087.
- ^ "Intel Develops Tera-Scale Research Chips". Intel News Release. 2006.
- ^ Intel Corporation (February 11, 2007). "Intel Research Advances 'Era Of Tera'". Intel Press Room. Archived from the original on April 13, 2009.
- ^ Bautista, Jerry (2008). "Tera-scale computing and interconnect challenges - 3D stacking considerations". 2008 IEEE Hot Chips 20 Symposium (HCS). Stanford, CA, USA: IEEE: 1–34. doi:10.1109/HOTCHIPS.2008.7476514. ISBN 978-1-4673-8871-9. S2CID 26400101.
- ^ Intel's Teraflops Research Chip (PDF). Intel Corporation. 2007. Archived (PDF) from the original on February 18, 2020.
- ^ Fossum, Tryggve (2007). High End MPSOC - The Personal Super Computer (PDF). MPSoC Conference 2007. p. 6.
{{cite book}}
: CS1 maint: location (link) CS1 maint: location missing publisher (link)