Jump to content

Tetrahedrite

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Lfstevens (talk | contribs) at 18:04, 2 December 2015 (→‎Applications: clean up using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Tetrahedrite
Tetrahedrite, hübnerite and quartz from Mundo Nuevo Mine, Huamachuco, Sánchez Carrión, La Libertad, Peru (size: 61 x 57 mm, 110 g)
General
CategorySulfosalt mineral
Formula
(repeating unit)
(Cu,Fe)
12
Sb
4
S
13
Strunz classification02.GB.05
Crystal systemCubic
Space groupCubic 43m - hextetrahedral
Unit cella = 10.39(16) Å; Z = 2
Identification
ColorSteel gray to iron-gray
Crystal habitGroups of tetrahedral crystals; massive, coarse to fine compact granular
TwinningContact and penetration twins on {111}
CleavageNone
FractureUneven to subconchoidal
TenacitySomewhat brittle
Mohs scale hardness3½ - 4
LusterMetallic, commonly splendent
StreakBlack, brown to dark red
DiaphaneityOpaque, except in very thin fragments
Specific gravity4.97
Optical propertiesIsotropic
Refractive indexn greater than 2.72
References[1][2]

Tetrahedrite is a copper antimony sulfosalt mineral with formula: (Cu,Fe)
12
Sb
4
S
13
. It is the antimony endmember of the continuous solid solution series with arsenic-bearing tennantite. Pure endmembers of the series are seldom if ever seen in nature. Of the two, the antimony rich phase is more common. Other elements also substitute in the structure, most notably iron and zinc, along with less common silver, mercury and lead. Bismuth also substitutes for the antimony site and bismuthian tetrahedrite or annivite is a recognized variety. The related, silver dominant, mineral species freibergite, although rare, is notable in that it can contain up to 18% silver.

Tetrahedrite crystals with chalcopyrite and sphalerite from the Casapalca Mine, Peru (size: 8.2 x 6.4 x 4.7 cm)

Tetrahedrite gets its name from the distinctive tetrahedron shaped cubic crystals. The mineral usually occurs in massive form, it is a steel grey to black metallic mineral with Mohs hardness of 3.5 to 4 and specific gravity of 4.6 to 5.2.

It occurs in low to moderate temperature hydrothermal veins and in some contact metamorphic deposits. It is a minor ore of copper and associated metals. It was first described in 1845 for occurrences in Freiberg, Saxony, Germany.

Applications

California-based Alphabet Energy announced plans to offer a thermoelectric device based on tetrahedrite to turn heat into electricity. The company claimed that other thermoelectrics typically produce about 2.5 percent efficiency, while tetrahedrite could achieve 5 to 10 percent.[3]

Other thermoelectrics are either scarce, expensive ($24–146/kg vs $4 for tetrahedrite) and/or toxic. Working with a natural material also reduces manufacturing costs, which otherwise chemically process pure materials.[3]

See also

References

  1. ^ Handbook of Mineralogy
  2. ^ "Tetrahedrite: Tetrahedrite mineral information and data". Mindat.org. 2014-07-12. Retrieved 2014-07-17.
  3. ^ a b Jacobs, Suzanne (2014-07-12). "Cheaper Thermoelectric Materials | MIT Technology Review". Technologyreview.com. Retrieved 2014-07-17.

External links

Media related to Tetrahedrite at Wikimedia Commons