Nitrosyl chloride: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 209.174.200.98 (talk) (HG) (3.4.10)
Tag: Reverted
Line 93: Line 93:
| year = 1830–1837
| year = 1830–1837
| pages = 27–29
| pages = 27–29
| jstor=110250}}</ref>
| jstor=110250}}<
@lssa.isabel for more facts dont forget to like comment post my post on your story and folow<3


==Reactions==
==Reactions==

Revision as of 17:21, 15 April 2021

Nitrosyl chloride
Skeletal formula of nitrosyl chloride with measurements
Spacefill model of nitrosyl chloride
Names
IUPAC name
Nitrosyl chloride[citation needed]
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.018.430 Edit this at Wikidata
EC Number
  • 220-273-1
E number E919 (glazing agents, ...)
MeSH nitrosyl+chloride
RTECS number
  • QZ7883000
UNII
UN number 1069
  • InChI=1S/ClNO/c1-2-3 checkY
    Key: VPCDQGACGWYTMC-UHFFFAOYSA-N checkY
  • ClN=O
Properties
NOCl
Molar mass 65.459 g mol−1
Appearance Yellow gas
Density 2.872 mg mL−1
Melting point −59.4 °C (−74.9 °F; 213.8 K)
Boiling point −5.55 °C (22.01 °F; 267.60 K)
Reacts
Structure
Dihedral, digonal
Hybridisation sp2 at N
1.90 D
Thermochemistry
261.68 J K−1 mol−1
51.71 kJ mol−1
Hazards
NFPA 704 (fire diamond)
Safety data sheet (SDS) inchem.org
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Nitrosyl chloride is the chemical compound with the formula NOCl. It is a yellow gas that is most commonly encountered as a decomposition product of aqua regia, a mixture of hydrochloric acid and nitric acid. It is a strong electrophile and oxidizing agent. It is sometimes called Tilden's reagent.

Structure and synthesis

The molecule is bent. A double bond exists between N and O (distance = 1.16 Å) and a single bond between N and Cl (distance = 1.96 Å). The O–N–Cl angle is 113°.[1]

Production

Since nitrosyl chloride is chemically simple and thermally stable, it can be produced in many ways.

HCl + NOHSO4H2SO4 + NOCl
  • A more convenient laboratory method involves the (reversible) dehydration of nitrous acid by HCl[3]
HNO2 + HCl → H2O + NOCl
Pd + HNO3 + 3 HCl → PdCl2 + 2 H2O + NOCl
  • NOCl forms by the direct combination of chlorine and nitric oxide; This reaction reverses above 100 °C.
Cl2 + 2 NO → 2NOCl
  • Another method of producing nitrosyl chloride is by direct union of the elements at 400 °C, although there is some regression as above.
N2 + O2 + Cl2 → 2 NOCl ⇌ 2 NO + Cl2

Occurrence in aqua regia

NOCl also arises from the combination of hydrochloric and nitric acids according to the following reaction:[4]

HNO3 + 3 HCl → Cl2 + 2 H2O + NOCl

In nitric acid, NOCl is readily oxidized into nitrogen dioxide. The presence of NOCl in aqua regia was described by Edmund Davy in 1831.Cite error: A <ref> tag is missing the closing </ref> (see the help page).

Nitrosyl chloride is used to prepare metal nitrosyl complexes. With molybdenum hexacarbonyl, NOCl gives the dinitrosyldichloride complex:[5]

Mo(CO)6 + 2 NOCl → MoCl2(NO)2 + 6 CO

It dissolves platinum:[6]

Pt + 6 NOCl → (NO+)2[PtCl6]2- + 4 NO

Applications in organic synthesis

Aside from its role in the production of caprolactam, NOCl finds some other uses in organic synthesis. It adds to alkenes to afford α-chloro oximes.[7] The addition of NOCl follows the Markovnikov rule. Ketenes also add NOCl, giving nitrosyl derivatives:

H2C=C=O + NOCl → ONCH2C(O)Cl

Epoxides react with NOCl to give an α-chloronitritoalkyl derivatives. In the case of propylene oxide, the addition proceeds with high regiochemistry:[8]

It converts amides to N-nitroso derivatives.[9] NOCl converts some cyclic amines to the alkenes. For example, aziridine reacts with NOCl to give ethene, nitrous oxide and hydrogen chloride.

Industrial applications

NOCl and cyclohexane react photochemically to give cyclohexanone oxime hydrochloride. This process exploits the tendency of NOCl to undergo photodissociation into NO and Cl radicals. The oxide is converted to caprolactam, a precursor to Nylon-6.[2]

Safety

Nitrosyl chloride is very toxic and irritating to the lungs, eyes, and skin.

References

  1. ^ Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.
  2. ^ a b Ritz, Josef; Fuchs, Hugo; Kieczka, Heinz; Moran, William C. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a05_031. ISBN 978-3527306732.
  3. ^ Morton, J. R.; Wilcox, H. W. (1953). "Nitrosyl Chloride". Inorganic Syntheses. Inorganic Syntheses. Vol. 48. p. 52. doi:10.1002/9780470132357.ch16. ISBN 9780470132357.
  4. ^ Beckham, L. J.; Fessler, W. A.; Kise, M. A. (1951). "Nitrosyl Chloride". Chemical Reviews. 48 (3): 319–396. doi:10.1021/cr60151a001. PMID 24541207.
  5. ^ Johnson, B. F. G.; Al-Obadi, K. H. (1970). "Dihalogenodinitrosylmolybdenum and Dihalogenodinitrosyltungsten". Inorg. Synth. 12: 264–266. doi:10.1002/9780470132432.ch47.
  6. ^ Moravek, Richard T. (1986). "Nitrosyl Hexachloroplatinate(IV)". Inorganic Syntheses. 24: 217–220. doi:10.1002/9780470132555.ch63.
  7. ^ Ohno, M.; Naruse, N.; Terasawa, I. (1969). "7-Cyanoheptanal". Org. Synth. 49: 27. doi:10.15227/orgsyn.049.0027.
  8. ^ Malinovskii, M. S.; Medyantseva, N. M. (1953). "Olefin Oxides. IX. Condensation of Olefin Oxides with Nitrosyl Chloride". Zhurnal Obshchei Khimii. 23: 84-6. (translated from Russian)
  9. ^ Van Leusen, A. M.; Strating, J. (1977). "p-Tolylsulfonyldiazomethane". Org. Synth. 57: 95. doi:10.15227/orgsyn.057.0095.

External links