Jump to content

Filament winding: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
mNo edit summary
Tag: possible conflict of interest
Line 32: Line 32:
Examples of [[continuous filament winding machine|filament winding machine]] producers:
Examples of [[continuous filament winding machine|filament winding machine]] producers:


*McClean Anderson <ref name="McClean Anderson">[http://www.mccleananderson.com McClean Anderson]</ref>
*Mikrosam A.D. <ref name="Mikrosam">[http://www.mikrosam.com Mikrosam]</ref>
*Mikrosam A.D. <ref name="Mikrosam">[http://www.mikrosam.com Mikrosam]</ref>



Revision as of 20:23, 14 September 2010

Filament winding is a fabrication technique for creating composite material structures. The process involves winding filaments under varying amounts of tension over a male mould or mandrel. The mandrel rotates while a carriage moves horizontally, laying down fibers in the desired pattern. The most common filaments are carbon or glass fiber and are coated with synthetic resin as they are wound. Once the mandrel is completely covered to the desired thickness, the mandrel is placed in an oven to solidify (set) the resin. Once the resin has cured, the mandrel is removed, leaving the hollow final product.

Filament winding is well suited to automation, where the tension on the filaments can be carefully controlled. Filaments that are applied with high tension results in a final product with higher rigidity and strength; lower tension results in more flexibility. The orientation of the filaments can also be carefully controlled so that successive layers are plied or oriented differently from the previous layer. The angle at which the fiber is laid down will determine the properties of the final product. A high angle "hoop" will provide crush strength, while a lower angle pattern (known as a closed or helical) will provide greater tensile strength.

Products currently being produced using this technique range from golf clubs, pipes, oars, bicycle forks, power and transmission poles, pressure vessels to missile casings, aircraft fuselages and lamp posts and yacht masts.

Fiberglass Laminating

Filament Winding can also be described as the manufacture of parts with high fiber volume fractions and controlled fiber orientation. Fiber tows are immersed in a resin bath where they are coated with low or medium molecular weight reactants. The impregnated tows are then literally wound around a mandrel (mold core) in a controlled pattern to form the shape of the part. After winding, the resin is then cured, typically using heat. The mold core may be removed or may be left as an integral component of the part(Rosato, D.V.).This process is primarily used for hollow, generally circular or oval sectioned components, such as pipes and tanks. Pressure vessels, pipes and drive shafts have all been manufactured using filament winding. It has been combined with other fiber application methods such as hand layup, pultrusion, and braiding. Compaction is through fiber tension and resin content is primarily metered. The fibers may be impregnated with resin before winding (wet winding), pre-impregnated (dry winding) or post-impregnated. Wet winding has the advantages of using the lowest cost materials with long storage life and low viscosity. The pre-impregnated systems produce parts with more consistent resin content and can often be wound faster.

Materials

Glass fibre is the fibre most frequently used for filament winding, carbon and aramid fibres are also used. Most high strength critical aerospace structures are produced with epoxy resins, with either epoxy or cheaper polyester resins being specified for most other applications. The ability to use continuous reinforcement without any breaks or joins is a definite advantage, as is the high fibre volume fraction that is obtainable, about 60% to 80%. Only the inner surface of a filament wound structure will be smooth unless a secondary operation is performed on the outer surface. The component is normally cured at high temperature before removing the mandrel. Finishing operations such as machining or grinding are not normally necessary (Furness, J., Azom.com).

Options

  • Resins: Any, e.g. epoxy, polyester, vinylester, phenolic.
  • Fibers: Glass, aramid, carbon and boron fibers . The fibers are used straight from a creel and not woven or stitched into a fabric form.
  • Cores: Any, although components are usually single skin.

Process

  • Uses a continuous length of fiber strand, roving, or tape
  • Results in a shell of materials with a high strength-to-weight ratio
  • Requires thermal curing of workpieces
  • Patterns may be longitudinal, circumferential, or helical [1]

Manufacturers

Examples of manufacturers that make large varieties of custom filament winding:

  • Future Pipe Industries (FPI)[2]
  • PCT [3]
  • PLP Comp [4]
  • Scorpius Space Launch Company (SSLC) [5]

Examples of filament winding machine producers:

  • McClean Anderson [6]
  • Mikrosam A.D. [7]

References

  1. ^ Todd, Robert H. "Manufacturing Processes Reference Guide." Industrial Press Inc. New York. 1994. Pg. 228
  2. ^ Future Pipe Industries LLC
  3. ^ PCT
  4. ^ PLP Comp
  5. ^ SSLC
  6. ^ McClean Anderson
  7. ^ Mikrosam