The numbers p and q above are said to be Hölder conjugates of each other. The special case p = q = 2 gives the Cauchy-Schwarz inequality.
This inequality holds even if ||fg||1 is infinite, the right-hand side also being infinite in that case. In particular, if f is in Lp(μ) and g is in Lq(μ), then fg is in L1(μ).
For 1 < p, q < ∞ and f ∈ Lp(μ) and g ∈ Lq(μ), Hölder's inequality becomes an equality if and only if |f |p and |g|q are linearly dependent in L1(μ), meaning that there exist α, β ≥ 0, not both of them zero, such that α|f |p = β|g|qμ-almost everywhere.
Hölder's inequality is used to prove the triangle inequality in the space Lp(μ) and the Minkowski inequality, and also to establish that Lp(μ) is dual to Lq(μ) for 1 ≤ q < ∞.
The brief statement of Hölder's inequality uses some conventions.
In the definition of Hölder conjugates, 1/∞ means zero.
If 1 ≤ p, q < ∞, then ||f ||p and ||g||q stand for the (possibly infinite) expressions
and
If p = ∞, then ||f ||∞ stands for the essential supremum of |f |, similarly for ||g||∞.
The notation ||f ||p with 1 ≤ p ≤ ∞ is a slight abuse, because in general it is only a norm of f if ||f ||p is finite and f is considered as equivalence class of μ-almost everywhere equal functions. If f ∈ Lp(μ) and g ∈ Lq(μ), then the notation is adequate.
On the right-hand side of Hölder's inequality, 0 times ∞ as well as ∞ times 0 means 0. Multiplying a > 0 with ∞ gives ∞.
Notable special cases
For the following cases assume that p and q are in the open interval (1,∞).
If S = N with the counting measure, then we get Hölder's inequality for sequence spaces:
If S is a measurable subset of Rn with the Lebesgue measure, and f and g are measurable real- or complex-valued functions on S, then Hölder inequality is
Let 0 < r < s and define p = s/r. Then q = p/(p−1) is the Hölder conjugate of p. Applying Hölder's inequality to the random variables |X|r and 1Ω, we obtain
In particular, if the sth absolute moment is finite, then the rth absolute moment is finite, too. (This also follows from Jensen's inequality.)
Proof of Hölder's inequality
There are several proofs of Hölder's inequality; the main idea in the following is Young's inequality.
If ||f ||p = 0, then f is zero μ-almost everywhere, and the product fg is zero μ-almost everywhere, hence the left-hand side of Hölder's inequality is zero. The same is true if ||g||q = 0. Therefore, we may assume ||f ||p > 0 and ||g||q > 0 in the following.
If ||f ||p = ∞ or ||g||q = ∞, then the right-hand side of Hölder's inequality is infinite. Therefore, we may assume that ||f ||p and ||g||q are in (0,∞).
If p = ∞ and q = 1, then |fg| ≤ ||f ||∞ |g| almost everywhere and Hölders inequality follows from the monotonicity of the Lebesgue integral. Similarly for p = 1 and q = ∞. Therefore, we may also assume p, q ∈ (1,∞).
Dividing f and g by ||f ||p and ||g||q, respectively, we can assume that
We now use Young's inequality, which states that
for all nonnegative a and b, where equality is achieved if and only if ap = bq. Hence
Integrating both sides gives
which proves the claim.
Under the assumptions p ∈ (1,∞) and ||f ||p = ||g||q = 1, equality holds if and only if |f |p = |g|q almost everywhere. More generally, if ||f ||p and ||g||q are in (0,∞), then Hölder's inequality becomes an equality if and only if there exist α, β > 0 (namely α = ||g||q and β = ||f ||p) such that
μ-almost everywhere (*)
The case ||f ||p = 0 corresponds to β = 0 in (*). The case ||g||q = 0 corresponds to α = 0 in (*).
Extremal equality
Statement
Assume that 1 ≤ p < ∞ and let q denote the Hölder conjugate. Then, for every ƒ ∈ Lp(μ),
where max indicates that there actually is a g maximizing the right-hand side. When p = ∞ and if each set A in the σ-field Σ with μ(A) = ∞ contains a subset B ∈ Σ with 0 < μ(B) < ∞ (which is true in particular when μ is σ-finite), then
Proof of the extremal equality
By Hölder's inequality, the integrals are well defined and, for 1 ≤ p ≤ ∞,
hence the left-hand side is always bounded above by the right-hand side.
Conversely, for 1 ≤ p ≤ ∞, observe first that the statement is obvious when ||ƒ ||p = 0. Therefore, we assume ||ƒ ||p > 0 in the following.
If 1 ≤ p < ∞, define g on S by
By checking the cases p = 1 and 1 < p < ∞ separately, we see that ||g||q = 1 and
It remains to consider the case p = ∞. For ε ∈ (0, 1) define
Since ƒ is measurable, A ∈ Σ. By the definition of ||ƒ ||∞ as the essential supremum of ƒ and the assumption ||ƒ ||∞ > 0, we have μ(A) > 0. Using the additional assumption on the σ-field Σ if necessary, there exists a subset B ∈ Σ of A with 0 < μ(B) < ∞. Define g on S by
Then g is well-defined, measurable and |g(x)| ≤ 1/μ(B) for x ∈ B, hence ||g||1 ≤ 1. Furthermore,
Remarks and examples
The equality for p = ∞ fails whenever there exists a set A in the σ-field Σ with μ(A) = ∞ that has no subsetB ∈ Σ with 0 < μ(B) < ∞ (the simplest example is the σ-field Σ containing just the empty set and S, and the measure μ with μ(S) = ∞). Then the indicator function 1A satisfies ||1A||∞ = 1, but every g ∈ L1(μ) has to be μ-almost everywhere constant on A, because it is Σ-measurable, and this constant has to be zero, because g is μ-integrable. Therefore, the above supremum for the indicator function 1A is zero and the extremal equality fails.
For p = ∞, the supremum is in general not attained. As an example, let S denote the natural numbers (without zero), Σ the power set of S, and μ the counting measure. Define ƒ(n) = (n − 1)/n for every natural number n. Then ||ƒ ||∞ = 1. For g ∈ L1(μ) with 0 < ||g||1 ≤ 1, let m denote the smallest natural number with g(m) ≠ 0. Then
Applications
The extremal equality is one of the ways for proving the triangle inequality ||ƒ1 + ƒ2||p ≤ ||ƒ1||p + ||ƒ2||p for all ƒ1 and ƒ2 in Lp(μ), see Minkowski inequality.
Hölder's inequality implies that every ƒ ∈ Lp(μ) defines a bounded (or continuous) linear functional κƒ on Lq(μ) by the formula
The extremal equality (when true) shows that the norm of this functional κƒ as element of the continuous dual spaceLq(μ)∗ coincides with the norm of ƒ in Lp(μ) (see also the Lp-space article).
Generalization of Hölder's inequality
Assume that r ∈ (0,∞) and p1, …, pn ∈ (0,∞] such that
Then, for all measurable real- or complex valued functions f1, …, fn defined on S,
In particular,
Note: For r ∈ (0,1), contrary to the notation, ||.||r is in general not a norm, because it doesn't satisfy the triangle inequality.
Proof of the generalization
We use Hölder's inequality and mathematical induction. For n = 1, the result is obvious. Let us now pass from n − 1 to n. Without loss of generality assume that p1 ≤ … ≤ pn.
Case 1: If pn = ∞, then
Pulling out the essential supremum of |fn| and using the induction hypothesis, we get
Case 2: If pn < ∞, then
and
are Hölder conjugates in (1,∞). Application of Hölder's inequality gives
Raising to the power 1/r and rewriting,
Since qr = pn and
the claimed inequality now follows by using the induction hypothesis.
Reverse Hölder inequality
Assume that p ∈ (1,∞) and that the measure space (S,Σ,μ) satisfies μ(S) > 0. Then, for all measurable real- or complex-valued functions f and g on S such that g(s) ≠ 0 for μ-almost all s ∈ S,
If ||fg||1 < ∞ and ||g||−1/(p−1) > 0, then the reverse Hölder inequality is an equality if and only if there exists an α ≥ 0 such that
μ-almost everywhere.
Note: ||f ||1/p and ||g||−1/(p−1) are not norms, these expressions are just compact notation for
and
Proof of the reverse Hölder inequality
Note that p and
are Hölder conjugates. Application of Hölder's inequality gives
Raising to the power p, rewriting and solving for ||fg||1 gives the reverse Hölder inequality.
Since g is not almost everywhere equal to the zero function, we can have equality if and only if there exists a constant α ≥ 0 such that |fg| = α|g|−q/p almost everywhere. Solving for the absolute value of f gives the claim.
Conditional Hölder inequality
Let be a probability space, a sub-σ-algebra, and p, q ∈ (1,∞) Hölder conjugates, meaning that 1/p + 1/q = 1. Then, for all real- or complex-valued random variables X and Y on Ω,
On the right-hand side of the conditional Hölder inequality, 0 times ∞ as well as ∞ times 0 means 0. Multiplying a > 0 with ∞ gives ∞.
Proof of the conditional Hölder inequality
Define the random variables
and note that they are measurable with respect to the sub-σ-algebra. Since
it follows that |X| = 0 a.s. on the set {U = 0}. Similarly, |Y| = 0 a.s. on the set {V = 0}, hence
and the conditional Hölder inequality holds on this set. On the set
the right-hand side is infinite and the conditional Hölder inequality holds, too. Dividing by the right-hand side, it therefore remains to show that
This is done by verifying that the inequality holds after integration over an arbitrary
Using the measurability of U, V, 1G with respect to the sub-σ-algebra, the rules for conditional expectations, Hölder's inequality and 1/p + 1/q = 1, we see that