Jump to content

Scientific realism: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Metaphysics nav template using AWB
No edit summary
Line 39: Line 39:
On the other hand, [[pessimistic induction]], one of the main arguments against realism, argues that the history of science contains many theories once regarded as empirically successful but which are now believed to be false. Additionally, the history of science contains many empirically successful theories whose unobservable terms are not believed to genuinely refer. For example, the effluvial theory of static electricity is an empirically successful theory whose central unobservable terms have been replaced by later theories. Realists reply that replacement of particular realist theories with better ones is to be expected due to the progressive nature of scientific knowledge, and when such replacements occur only superfluous unobservables are dropped. For example, [[Albert Einstein]]'s theory of [[special relativity]] showed that the concept of the [[luminiferous ether]] could be dropped because it had contributed nothing to the success of the theories of [[mechanics]] and [[electromagnetism]]. On the other hand, when theory replacement occurs, a well-supported concept, such as the concept of [[atom]]s, is not dropped but is incorporated into the new theory in some form.
On the other hand, [[pessimistic induction]], one of the main arguments against realism, argues that the history of science contains many theories once regarded as empirically successful but which are now believed to be false. Additionally, the history of science contains many empirically successful theories whose unobservable terms are not believed to genuinely refer. For example, the effluvial theory of static electricity is an empirically successful theory whose central unobservable terms have been replaced by later theories. Realists reply that replacement of particular realist theories with better ones is to be expected due to the progressive nature of scientific knowledge, and when such replacements occur only superfluous unobservables are dropped. For example, [[Albert Einstein]]'s theory of [[special relativity]] showed that the concept of the [[luminiferous ether]] could be dropped because it had contributed nothing to the success of the theories of [[mechanics]] and [[electromagnetism]]. On the other hand, when theory replacement occurs, a well-supported concept, such as the concept of [[atom]]s, is not dropped but is incorporated into the new theory in some form.


Also against scientific realism [[constructivist epistemology|social constructivists]] point out that scientific realism is unable to account for the rapid change that occurs in scientific knowledge during periods of revolution. Constructivists may also argue that the success of theories is only a part of the construction. However, these arguments ignore the fact that many scientists are not realists. In fact, during what is perhaps the most notable example of revolution in science—the development of [[quantum mechanics]] in the 1920s—the dominant philosophy of science was [[logical positivism]]. The alternative realist [[Bohm interpretation]] of quantum mechanics does not make such a revolutionary break with the concepts of [[classical physics]].
Also against scientific realism [[constructivist epistemology|social constructivists]] point out that scientific realism is unable to account for the rapid change that occurs in scientific knowledge during periods of revolution. Constructivists may also argue that the success of theories is only a part of the construction. However, these arguments ignore the fact that many scientists are not realists. In fact, during what is perhaps the most notable example of revolution in science—the development of [[quantum mechanics]] in the 1920s—the dominant philosophy of science was [[logical positivism]]. The alternative realist [[Bohm interpretation]] and [[many-worlds interpretation]] of quantum mechanics do not make such a revolutionary break with the concepts of [[classical physics]].


Another argument against scientific realism, deriving from the [[underdetermination|underdetermination problem]], is not so historically motivated as these others. It claims that observational data can in principle be explained by multiple theories that are mutually incompatible. Realists counter by pointing out that there have been few actual cases of underdetermination in the history of science. Usually the requirement of explaining the data is so exacting that scientists are lucky to find even one theory that fulfills it. Furthermore, if we take the underdetermination argument seriously, it implies that we can know about only what we have directly [[observation|observed]]. For example, we could not theorize that [[dinosaur]]s once lived based on the [[fossil]] evidence because other theories (e.g., that the fossils are clever hoaxes) can account for the same data. Realists claim that, in addition to empirical adequacy, there are other criteria for theory choice, such as [[parsimony#Science|parsimony]].
Another argument against scientific realism, deriving from the [[underdetermination|underdetermination problem]], is not so historically motivated as these others. It claims that observational data can in principle be explained by multiple theories that are mutually incompatible. Realists counter by pointing out that there have been few actual cases of underdetermination in the history of science. Usually the requirement of explaining the data is so exacting that scientists are lucky to find even one theory that fulfills it. Furthermore, if we take the underdetermination argument seriously, it implies that we can know about only what we have directly [[observation|observed]]. For example, we could not theorize that [[dinosaur]]s once lived based on the [[fossil]] evidence because other theories (e.g., that the fossils are clever hoaxes) can account for the same data. Realists claim that, in addition to empirical adequacy, there are other criteria for theory choice, such as [[parsimony#Science|parsimony]].

Revision as of 08:35, 18 April 2009

Scientific realism is, at the most general level, the view that the world described by science is the real world, as it is, independent of what we might take it to be. Within philosophy of science, it is often framed as an answer to the question "what does the success of science involve?". The debate over what the success of science involves centers primarily on the status of unobservable entities apparently talked about by scientific theories. Roughly put, scientific realism is the thesis that the unobservable things talked about by science are little different from ordinary observable things (such as tables and chairs).

Main features of scientific realism

Scientific realism involves two basic positions. First, it is a set of claims about the features of an ideal scientific theory; an ideal theory is the sort of theory science aims to produce. Second, it is the commitment that science will eventually produce theories very much like an ideal theory and that science has done pretty well thus far in some domains. It is important to note that one might be a scientific realist regarding some sciences while not being a realist regarding others. For example, one might hold realist attitudes toward physics, chemistry and biology, and not toward economics, psychology and sociology.

According to scientific realism, an ideal scientific theory has the following features:

  • The claims the theory makes are either true or false, depending on whether the entities talked about by the theory exist and are correctly described by the theory. This is the semantic commitment of scientific realism.
  • The entities described by the scientific theory exist objectively and mind-independently. This is the metaphysical commitment of scientific realism.
  • There are reasons to believe some significant portion of what the theory says. This is the epistemological commitment.

Combining the first and the second claim entails that an ideal scientific theory says true things about genuinely existing entities. The third claim says that we have reasons to believe that the things said about these entities are true.

Scientific realism usually holds that science makes progress, i.e. scientific theories usually get successfully better, or, rather, answer more and more questions. For this reason, many people, scientific realist or otherwise, hold that realism should make sense of the progress of science in terms of theories being successively more like the ideal theory that scientific realists describe.

History of scientific realism

Scientific realism is related to much older philosophical positions including rationalism and realism. However, it is a thesis about science developed in the twentieth century. Portraying scientific realism in terms of its ancient, medieval, and early modern cousins is at best misleading.

Scientific realism is developed largely as a reaction to logical positivism. Logical positivism was the first philosophy of science in the twentieth century and the forerunner of scientific realism, holding that a sharp distinction can be drawn between observational terms and theoretical terms, the latter capable of semantic analysis in observational and logical terms.

Logical positivism encountered difficulties with:

  • The verification theory of meaning (for which see Hempel (1950)).
  • Troubles with the analytic-synthetic distinction (for which see Quine (1950)).
  • The theory ladenness of observation (for which see Kuhn (1970) and Quine (1960)).
  • Difficulties moving from the observationality of terms to observationality of sentences (for which see Putnam (1962)).
  • The vagueness of the observational-theoretical distinction (for which see Maxwell (1962)).

These difficulties for logical positivism suggest, but do not entail, scientific realism, and lead to the development of realism as a philosophy of science.

The development of realism as an alternative to positivism also lead to arguments in support of realism as a philosophy of science.

Realism became the dominant philosophy of science after positivism. Bas van Fraassen developed constructive empiricism as an alternative to realism. Responses to van Fraassen have sharpened realist positions and lead to some revisions of scientific realism.

Arguments for and against scientific realism

One of the main arguments for scientific realism centers on the observation that scientific knowledge is progressive in nature, and that it is able to predict phenomena successfully. Many realists think the operational success of a theory lends credence to the idea that its more unobservable aspects exist, because they were how the theory reasoned its predictions. For example, a scientific realist would point out that science must derive some ontological support for atoms from the outstanding phenomenological success of all the theories using them.

Arguments for scientific realism often appeal to abductive reasoning or "inference to the best explanation". Scientific realists point to the success of scientific theories in predicting and explaining a variety of phenomena, and argue that from this we can infer that our scientific theories (or at least the best ones) provide true descriptions of the world, or approximately so.

On the other hand, pessimistic induction, one of the main arguments against realism, argues that the history of science contains many theories once regarded as empirically successful but which are now believed to be false. Additionally, the history of science contains many empirically successful theories whose unobservable terms are not believed to genuinely refer. For example, the effluvial theory of static electricity is an empirically successful theory whose central unobservable terms have been replaced by later theories. Realists reply that replacement of particular realist theories with better ones is to be expected due to the progressive nature of scientific knowledge, and when such replacements occur only superfluous unobservables are dropped. For example, Albert Einstein's theory of special relativity showed that the concept of the luminiferous ether could be dropped because it had contributed nothing to the success of the theories of mechanics and electromagnetism. On the other hand, when theory replacement occurs, a well-supported concept, such as the concept of atoms, is not dropped but is incorporated into the new theory in some form.

Also against scientific realism social constructivists point out that scientific realism is unable to account for the rapid change that occurs in scientific knowledge during periods of revolution. Constructivists may also argue that the success of theories is only a part of the construction. However, these arguments ignore the fact that many scientists are not realists. In fact, during what is perhaps the most notable example of revolution in science—the development of quantum mechanics in the 1920s—the dominant philosophy of science was logical positivism. The alternative realist Bohm interpretation and many-worlds interpretation of quantum mechanics do not make such a revolutionary break with the concepts of classical physics.

Another argument against scientific realism, deriving from the underdetermination problem, is not so historically motivated as these others. It claims that observational data can in principle be explained by multiple theories that are mutually incompatible. Realists counter by pointing out that there have been few actual cases of underdetermination in the history of science. Usually the requirement of explaining the data is so exacting that scientists are lucky to find even one theory that fulfills it. Furthermore, if we take the underdetermination argument seriously, it implies that we can know about only what we have directly observed. For example, we could not theorize that dinosaurs once lived based on the fossil evidence because other theories (e.g., that the fossils are clever hoaxes) can account for the same data. Realists claim that, in addition to empirical adequacy, there are other criteria for theory choice, such as parsimony.

See also

References

  • Hempel, Carl. (1950). "Empiricist Criteria of Cognitive Significance" in Boyd, Richard et al. eds. (1990). The Philosophy of Science Cambridge: MIT Press.
  • Kukla, A. (2000). Social constructivism and the philosophy of science. London: Routledge.
  • Kuhn, Thomas. (1970). The Structure of Scientific Revolutions, 2nd Edition Chicago: University of Chicago Press.
  • Laudan, Larry. (1981). "A Confutation of Convergent Realism" Philosophy of Science
  • Leplin, Jarrett. (1984). Scientific Realism. California: University of California Press.
  • Leplin, Jarrett. (1997). A Novel Defense of Scientific Realism. Oxford: Oxford University Press.
  • Maxwell, Grover (1962). "The Ontological Status of Theoretical Entities" in Feigl and Maxwell Scientific Explanation, Space, and Time vol. 3, Minnesota Studies in the Philosophy of Science, 3-15.
  • Okasha, Samir. (2002). Philosophy of science: A very short introduction. Oxford: Oxford University Press. See especially chapter 4, "Realism and Anti-Realism."
  • Putnam, Hilary. (1962). "What Theories are Not" in Ernst Nagel et al. (1962). Logic, Methodology, and Philosophy of Science Stanford University Press.
  • Psillos, Stathis. (1999). Scientific realism: How science tracks truth. London: Routledge.
  • Quine, W.V.O. (1951). "Two Dogmas of Empiricism" in his (1953)[1]. From a Logical Point of View Cambridge: Harvard University Press.
  • Quine, W.V.O. (1960). Word and Object Cambridge: MIT Press.
  • Sankey, H. (2001). "Scientific Realism: An Elaboration and a Defense" retrieved from http://philsci-archive.pitt.edu