Jump to content

Scigress: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
No edit summary
Line 38: Line 38:
* Determination of low energy conformations and thermodynamic properties.
* Determination of low energy conformations and thermodynamic properties.
* Calculation and 3D-visualization of electronic properties: partial charges, orbitals, electron densities, and electrostatic surfaces and more.
* Calculation and 3D-visualization of electronic properties: partial charges, orbitals, electron densities, and electrostatic surfaces and more.
* Analysis of reactions: transitions states and intrinsic reaction coordinates.
* Analysis of [[Chemical reaction|reactions]]: [[Transition state|transition states]] and intrinsic reaction coordinates.
* Spectroscopic properties analysis: IR, UV-VIS, NMR.
* [[Spectroscopy|Spectroscopic]] properties analysis: [[Infrared spectroscopy|IR]], [[Ultraviolet–visible spectroscopy|UV-VIS]], NMR.
* Study of phase transitions, expansion, crystal defects, compressibility, tensile strength, adsorption, absorption, thermal conductivity.
* Study of phase transitions, expansion, crystal defects, compressibility, tensile strength, adsorption, absorption, thermal conductivity.
* Protein handling and protein-ligand docking on quantum level.
* Protein handling and protein-ligand docking on quantum level.

Revision as of 14:12, 12 July 2013

SCIGRESS
Developer(s)Fujitsu Limited
Stable release
2.4(3.1) / July 2013 (2013-07)
Written inC++, C, Java, Fortran
Operating systemWindows XP and later, Linux
Available inEnglish
TypeSimulation software
LicenseProprietary commercial software
Websitewww.scigress.com

SCIGRESS is molecular modelling, computational chemistry and materials science software suite .

About SCIGRESS

SCIGRESS is a sophisticated molecular modeling suite dedicated for both experimental and computational chemists and biochemists. SCIGRESS enables the researchers to study and design wide range of molecular systems:

Functionality

See SCIGRESS website for a comprehensive information.[1]
  • Intuitive, easy to learn, property driven user interface and batch processing.
  • Theory levels: DFT, semi-empirical, molecular mechanics and dynamics.
  • Determination of low energy conformations and thermodynamic properties.
  • Calculation and 3D-visualization of electronic properties: partial charges, orbitals, electron densities, and electrostatic surfaces and more.
  • Analysis of reactions: transition states and intrinsic reaction coordinates.
  • Spectroscopic properties analysis: IR, UV-VIS, NMR.
  • Study of phase transitions, expansion, crystal defects, compressibility, tensile strength, adsorption, absorption, thermal conductivity.
  • Protein handling and protein-ligand docking on quantum level.
  • Multiple presentation-quality visualization options and movie creation.

Capabilities Summary

  • Presentation quality graphics

File types

Native file formats are

  • ChemicalSample files (.csf),
  • ChemicalSample map files (.map),
  • ChemicalSpreadsheet files (.plf),
  • trajectory files (.trj),
  • crystal files (.xsf), .irc, .drc.

Files can be imported from the following formats.

  • MatExp simulation files (.sim), Tripos files (.mol2), MDL files (.mdl, .mol, .sdf, .sd),
  • SDF files (.sdf, .sd),
  • CambridgeSoft files (.cdx, .cdxml, .c3xml),
  • XMol XYZ files (.xyz),
  • ShelX files (.ins),
  • Crystalographic Information files (.cif),
  • MatExp unit cell files (.bdl),
  • MatExp input files (.inp),
  • MOPAC Cartesian files (.mop),
  • MatExp Mol files (.mol),
  • MOPAC Input files (.mop, .dat),
  • MOPAC output files (.out),
  • Gaussian Checkpoint files (.fch, .fchk)

Files can be saved as:

  • Protein Databank files (.pdb, .ent),
  • Tripos files (.mol2),
  • MDL files (.mdl, .mol, .sdf, .sd),
  • GAMESS input files (.inp),
  • MOPAC Input files (.mop, .dat),
  • XMol XYZ files (.xyz),
  • MatExp input files (.inp),
  • MatExp unit cell files (.bdl)

References

  1. ^ Feature list of the SCIGRESS suite
  2. ^ Michael J. S. Dewar, Eve G. Zoebisch, Eamonn F. Healy, James J. P. Stewart (1985). "Development and use of quantum molecular models. 75. Comparative tests of theoretical procedures for studying chemical reactions". Journal of the American Chemical Society. 107 (19): 3902–3909. doi:10.1021/ja00299a024.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^ James J. P. Stewart (1989). "Optimization of parameters for semiempirical methods I. Method". Journal of Computational Chemistry. 10 (2): 209–220. doi:10.1002/jcc.540100208.
  4. ^ Muegge I, Martin YC (1999). "A general and fast scoring function for protein-ligand interactions: a simplified potential approach". J Med Chem. 42 (5): 791–804. doi:10.1021/jm980536j. PMID 10072678.
  5. ^ Ali HI, Fujita T, Akaho E, Nagamatsu T (2010). "A comparative study of AutoDock and PMF scoring performances, and SAR of 2-substituted pyrazolotriazolopyrimidines and 4-substituted pyrazolopyrimidines as potent xanthine oxidase inhibitors". J Comput Aided Mol Des. 24 (1): 57–75. doi:10.1007/s10822-009-9314-z. PMID 20039101.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ http://dx.doi.org/10.1007/978-90-481-2853-2_15
  7. ^ http://localscf.com/localscf.com/default.aspx.html
  8. ^ Ishihara, M.; Wakabayashi, H.; Motohashi, N.; Sakagami, H. (2011). "Quantitative structure-cytotoxicity relationship of newly synthesised trihaloacetylazulenes determined by a semi-empirical molecular-orbital method (PM5)". Anticancer Res. 31 (2): 515–20. PMID 21378332. {{cite journal}}: Unknown parameter |month= ignored (help)