Jump to content

Cumulonimbus flammagenitus: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Monkbot (talk | contribs)
m →‎top: Task 16: replaced (2×) / removed (0×) deprecated |dead-url= and |deadurl= with |url-status=;
m Citation provided
Line 4: Line 4:
[[File:POLARCATfigure4.jpg|thumb|Picture of a pyrocumulonimbus cloud, taken from a commercial airliner cruising at about 10 km altitude.<ref>{{cite journal |last1=Fromm |first1=Michael |last2=Alfred |first2=Jerome |last3=Hoppel |first3=Karl |last4=Hornstein |first4=John |last5=Bevilacqua |first5=Richard |last6=Shettle |first6=Eric |last7=Servranckx |first7=René |last8=Li |first8=Zhanqing |last9=Stocks |first9=Brian |date=May 1, 2000 |title=Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998 |journal=Geophysical Research Letters |volume=27 |issue=9 |pages=1407–1410 |bibcode=2000GeoRL..27.1407F |doi=10.1029/1999GL011200 |accessdate=August 29, 2013 |url=http://www.cpi.com/remsensing/midatm/smoke.html |archiveurl=https://web.archive.org/web/20090106220611/http://www.cpi.com/remsensing/midatm/smoke.html |archivedate=January 6, 2009 |display-authors=3}}</ref>]]
[[File:POLARCATfigure4.jpg|thumb|Picture of a pyrocumulonimbus cloud, taken from a commercial airliner cruising at about 10 km altitude.<ref>{{cite journal |last1=Fromm |first1=Michael |last2=Alfred |first2=Jerome |last3=Hoppel |first3=Karl |last4=Hornstein |first4=John |last5=Bevilacqua |first5=Richard |last6=Shettle |first6=Eric |last7=Servranckx |first7=René |last8=Li |first8=Zhanqing |last9=Stocks |first9=Brian |date=May 1, 2000 |title=Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998 |journal=Geophysical Research Letters |volume=27 |issue=9 |pages=1407–1410 |bibcode=2000GeoRL..27.1407F |doi=10.1029/1999GL011200 |accessdate=August 29, 2013 |url=http://www.cpi.com/remsensing/midatm/smoke.html |archiveurl=https://web.archive.org/web/20090106220611/http://www.cpi.com/remsensing/midatm/smoke.html |archivedate=January 6, 2009 |display-authors=3}}</ref>]]


The '''cumulonimbus flammagenitus''' cloud ('''CbFg'''), also known as the '''pyrocumulonimbus''' cloud, is a type of [[cumulonimbus cloud]] that forms above a source of heat, such as a [[wildfire]], and may sometimes even extinguish the fire that formed it.{{citation needed|date=April 2016}} It is the most extreme manifestation of a [[Flammagenitus (cloud)|flammagenitus cloud]]. According to the [[American Meteorological Society]]’s Glossary of Meteorology, a flammagenitus is "a cumulus cloud formed by a rising thermal from a fire, or enhanced by buoyant plume emissions from an industrial combustion process."<ref>{{cite web|url=http://amsglossary.allenpress.com/glossary/search?query=pyrocumulus|title=AMS Glossary|publisher=American Meteorological Society|accessdate=6 January 2012}}{{Dead link|date=July 2019 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> Analogous to the meteorological distinction between [[Cumulus cloud|cumulus]] and [[cumulonimbus]], the cumulonimbus flammagenitus is a fire-aided or&nbsp;–caused convective cloud, like a flammagenitus, but with considerable vertical development. The CbFg reaches the upper [[troposphere]] or even lower [[stratosphere]] and may involve [[Precipitation (meteorology)|precipitation]] (although usually light),{{cn|date=September 2014}} [[hail]], lightning, extreme low-level [[wind]]s, and in some cases even [[tornado]]es.<ref>{{Cite journal | last1 = Fromm | first1 = M. | last2 = Tupper | first2 = A. | last3 = Rosenfeld | first3 = D. | last4 = Servranckx | first4 = R. | last5 = McRae | first5 = R. | title = Violent pyro-convective storm devastates Australia's capital and pollutes the stratosphere | doi = 10.1029/2005GL025161 | journal = Geophysical Research Letters | volume = 33 | issue = 5 | pages = L05815 | year = 2006 | pmid = | pmc = |bibcode = 2006GeoRL..33.5815F }}</ref>
The '''cumulonimbus flammagenitus''' cloud ('''CbFg'''), also known as the '''pyrocumulonimbus''' cloud, is a type of [[cumulonimbus cloud]] that forms above a source of heat, such as a [[wildfire]], and may sometimes even extinguish the fire that formed it.<ref name=firecloud>{{cite web|last=Csifo|first=Noemi|title=Fire Cloud Cumulus Cumulonimbus Weather|url=http://www.sciences360.com/index.php/fire-cloud-cumulus-cumulonimbus-weather-3457/|work=Sciences 360|publisher=R R Donelley|accessdate=22 October 2013}}</ref> It is the most extreme manifestation of a [[Flammagenitus (cloud)|flammagenitus cloud]]. According to the [[American Meteorological Society]]’s Glossary of Meteorology, a flammagenitus is "a cumulus cloud formed by a rising thermal from a fire, or enhanced by buoyant plume emissions from an industrial combustion process."<ref>{{cite web|url=http://amsglossary.allenpress.com/glossary/search?query=pyrocumulus|title=AMS Glossary|publisher=American Meteorological Society|accessdate=6 January 2012}}{{Dead link|date=July 2019 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> Analogous to the meteorological distinction between [[Cumulus cloud|cumulus]] and [[cumulonimbus]], the cumulonimbus flammagenitus is a fire-aided or&nbsp;–caused convective cloud, like a flammagenitus, but with considerable vertical development. The CbFg reaches the upper [[troposphere]] or even lower [[stratosphere]] and may involve [[Precipitation (meteorology)|precipitation]] (although usually light),{{cn|date=September 2014}} [[hail]], lightning, extreme low-level [[wind]]s, and in some cases even [[tornado]]es.<ref>{{Cite journal | last1 = Fromm | first1 = M. | last2 = Tupper | first2 = A. | last3 = Rosenfeld | first3 = D. | last4 = Servranckx | first4 = R. | last5 = McRae | first5 = R. | title = Violent pyro-convective storm devastates Australia's capital and pollutes the stratosphere | doi = 10.1029/2005GL025161 | journal = Geophysical Research Letters | volume = 33 | issue = 5 | pages = L05815 | year = 2006 | pmid = | pmc = |bibcode = 2006GeoRL..33.5815F }}</ref>


The CbFg was named following the discovery in 1998,<ref>{{cite journal |title=The untold story of pyrocumulonimbus, 2010|journal=Bulletin of the American Meteorological Society|volume=91|issue=9|pages=1193–1210|doi=10.1175/2010BAMS3004.1|year = 2010|last1 = Fromm|first1 = Michael|last2=Lindsey|first2=Daniel T.|last3=Servranckx|first3=René|last4=Yue|first4=Glenn|last5=Trickl|first5=Thomas|last6=Sica|first6=Robert|last7=Doucet|first7=Paul|last8=Godin-Beekmann|first8=Sophie}}</ref> that extreme manifestations of this pyroconvection caused direct injection of large abundances of smoke from a [[firestorm]] into the lower stratosphere.<ref>[https://web.archive.org/web/20140824082109/http://www.nasa.gov/topics/earth/features/pyrocb.html Fire-Breathing Storm Systems. NASA]</ref><ref>{{cite web |url=http://earthobservatory.nasa.gov/IOTD/view.php?id=4755 |title=Smoke Soars to Stratospheric Heights |last1=Averill |first1=Clare |last2=Logan |first2=Jennifer |work=Earth Observatory |publisher=NASA |date=August 19, 2004 |accessdate=March 10, 2013}}</ref><ref>{{cite journal |last1=Fromm |first1=Michael |last2=Alfred |first2=Jerome |last3=Hoppel |first3=Karl |last4=Hornstein |first4=John |last5=Bevilacqua |first5=Richard |last6=Shettle |first6=Eric |last7=Servranckx |first7=René |last8=Li |first8=Zhanqing |last9=Stocks |first9=Brian |date=May 1, 2000 |title=Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998 |journal=Geophysical Research Letters |volume=27 |issue=9 |pages=1407–1410 |bibcode=2000GeoRL..27.1407F |doi=10.1029/1999GL011200 |accessdate=August 29, 2013 |url=http://www.cpi.com/remsensing/midatm/smoke.html |archiveurl=https://web.archive.org/web/20090106220611/http://www.cpi.com/remsensing/midatm/smoke.html |archivedate=January 6, 2009 |display-authors=3}}</ref><ref>{{Cite journal|last1=Fromm |first1=M. |last2=Stocks |first2=B. |last3=Servranckx |first3=R. |last4=Lindsey |first4=D. |year=2006 |title=Smoke in the Stratosphere: What Wildfires have Taught Us About Nuclear Winter |journal=[[Eos (journal)|Eos, Transactions, American Geophysical Union]] |volume=87 |issue=52 Fall Meet. Suppl |pages=Abstract U14A–04 |url=http://www.agu.org/meetings/fm06/fm06-sessions/fm06_U14A.html |display-authors=3 |url-status=unfit |archiveurl=https://web.archive.org/web/20141006085234/http://www.agu.org/meetings/fm06/fm06-sessions/fm06_U14A.html |archivedate=October 6, 2014 }}</ref><ref>{{cite journal| last1 = Fromm | first1 = M.| last2 = Servranckx | first2 = R.| doi = 10.1029/2002GL016820| title = Transport of forest fire smoke above the tropopause by supercell convection| journal = Geophysical Research Letters| volume = 30| issue = 10| pages = 1542| year = 2003| pmid = | pmc = | bibcode=2003GeoRL..30.1542F}}</ref><ref>{{cite journal |last1=Jost |first1=Hans-Jürg |last2=Drdla |first2=Katja |last3=Stohl |first3=Andreas |last4=Pfister |first4=Leonhard |date=June 2, 2004 |title=In-situ observations of mid-latitude forest fire plumes deep in the stratosphere |journal=[[Geophysical Research Letters]] |volume=31 |issue=11 |pages=L11101 |id=CiteID L11101 |bibcode=2004GeoRL..3111101J |doi=10.1029/2003GL019253 |accessdate=August 31, 2013 |url=http://www.espo.nasa.gov/docs/crystalface/Jost2004.grl.pdf |display-authors=3}}</ref> The [[aerosol]] of smoke comprising CbFg clouds can persist for weeks, and with that, reduce [[insolation|ground level sunlight]] in the same manner as the “[[nuclear winter]]" effect.<ref>{{Cite journal | last1 = Fromm | first1 = M. | last2 = Tupper | first2 = A. | last3 = Rosenfeld | first3 = D. | last4 = Servranckx | first4 = R. | last5 = McRae | first5 = R. | title = Violent pyro-convective storm devastates Australia's capital and pollutes the stratosphere | doi = 10.1029/2005GL025161 | journal = Geophysical Research Letters | volume = 33 | issue = 5 | pages = L05815 | year = 2006 | pmid = | pmc = |bibcode = 2006GeoRL..33.5815F }}</ref><ref>{{Cite journal|last1=Fromm |first1=M. |last2=Stocks |first2=B. |last3=Servranckx |first3=R. |last4=Lindsey |first4=D. |year=2006 |title=Smoke in the Stratosphere: What Wildfires have Taught Us About Nuclear Winter |journal=[[Eos (journal)|Eos, Transactions, American Geophysical Union]] |volume=87 |issue=52 Fall Meet. Suppl |pages=Abstract U14A–04 |url=http://www.agu.org/meetings/fm06/fm06-sessions/fm06_U14A.html |display-authors=3 |url-status=unfit |archiveurl=https://web.archive.org/web/20141006085234/http://www.agu.org/meetings/fm06/fm06-sessions/fm06_U14A.html |archivedate=October 6, 2014 }}</ref> A cumulonimbus flammagenitus may often form from the [[eruption column]] of a volcano.
The CbFg was named following the discovery in 1998,<ref>{{cite journal |title=The untold story of pyrocumulonimbus, 2010|journal=Bulletin of the American Meteorological Society|volume=91|issue=9|pages=1193–1210|doi=10.1175/2010BAMS3004.1|year = 2010|last1 = Fromm|first1 = Michael|last2=Lindsey|first2=Daniel T.|last3=Servranckx|first3=René|last4=Yue|first4=Glenn|last5=Trickl|first5=Thomas|last6=Sica|first6=Robert|last7=Doucet|first7=Paul|last8=Godin-Beekmann|first8=Sophie}}</ref> that extreme manifestations of this pyroconvection caused direct injection of large abundances of smoke from a [[firestorm]] into the lower stratosphere.<ref>[https://web.archive.org/web/20140824082109/http://www.nasa.gov/topics/earth/features/pyrocb.html Fire-Breathing Storm Systems. NASA]</ref><ref>{{cite web |url=http://earthobservatory.nasa.gov/IOTD/view.php?id=4755 |title=Smoke Soars to Stratospheric Heights |last1=Averill |first1=Clare |last2=Logan |first2=Jennifer |work=Earth Observatory |publisher=NASA |date=August 19, 2004 |accessdate=March 10, 2013}}</ref><ref>{{cite journal |last1=Fromm |first1=Michael |last2=Alfred |first2=Jerome |last3=Hoppel |first3=Karl |last4=Hornstein |first4=John |last5=Bevilacqua |first5=Richard |last6=Shettle |first6=Eric |last7=Servranckx |first7=René |last8=Li |first8=Zhanqing |last9=Stocks |first9=Brian |date=May 1, 2000 |title=Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998 |journal=Geophysical Research Letters |volume=27 |issue=9 |pages=1407–1410 |bibcode=2000GeoRL..27.1407F |doi=10.1029/1999GL011200 |accessdate=August 29, 2013 |url=http://www.cpi.com/remsensing/midatm/smoke.html |archiveurl=https://web.archive.org/web/20090106220611/http://www.cpi.com/remsensing/midatm/smoke.html |archivedate=January 6, 2009 |display-authors=3}}</ref><ref>{{Cite journal|last1=Fromm |first1=M. |last2=Stocks |first2=B. |last3=Servranckx |first3=R. |last4=Lindsey |first4=D. |year=2006 |title=Smoke in the Stratosphere: What Wildfires have Taught Us About Nuclear Winter |journal=[[Eos (journal)|Eos, Transactions, American Geophysical Union]] |volume=87 |issue=52 Fall Meet. Suppl |pages=Abstract U14A–04 |url=http://www.agu.org/meetings/fm06/fm06-sessions/fm06_U14A.html |display-authors=3 |url-status=unfit |archiveurl=https://web.archive.org/web/20141006085234/http://www.agu.org/meetings/fm06/fm06-sessions/fm06_U14A.html |archivedate=October 6, 2014 }}</ref><ref>{{cite journal| last1 = Fromm | first1 = M.| last2 = Servranckx | first2 = R.| doi = 10.1029/2002GL016820| title = Transport of forest fire smoke above the tropopause by supercell convection| journal = Geophysical Research Letters| volume = 30| issue = 10| pages = 1542| year = 2003| pmid = | pmc = | bibcode=2003GeoRL..30.1542F}}</ref><ref>{{cite journal |last1=Jost |first1=Hans-Jürg |last2=Drdla |first2=Katja |last3=Stohl |first3=Andreas |last4=Pfister |first4=Leonhard |date=June 2, 2004 |title=In-situ observations of mid-latitude forest fire plumes deep in the stratosphere |journal=[[Geophysical Research Letters]] |volume=31 |issue=11 |pages=L11101 |id=CiteID L11101 |bibcode=2004GeoRL..3111101J |doi=10.1029/2003GL019253 |accessdate=August 31, 2013 |url=http://www.espo.nasa.gov/docs/crystalface/Jost2004.grl.pdf |display-authors=3}}</ref> The [[aerosol]] of smoke comprising CbFg clouds can persist for weeks, and with that, reduce [[insolation|ground level sunlight]] in the same manner as the “[[nuclear winter]]" effect.<ref>{{Cite journal | last1 = Fromm | first1 = M. | last2 = Tupper | first2 = A. | last3 = Rosenfeld | first3 = D. | last4 = Servranckx | first4 = R. | last5 = McRae | first5 = R. | title = Violent pyro-convective storm devastates Australia's capital and pollutes the stratosphere | doi = 10.1029/2005GL025161 | journal = Geophysical Research Letters | volume = 33 | issue = 5 | pages = L05815 | year = 2006 | pmid = | pmc = |bibcode = 2006GeoRL..33.5815F }}</ref><ref>{{Cite journal|last1=Fromm |first1=M. |last2=Stocks |first2=B. |last3=Servranckx |first3=R. |last4=Lindsey |first4=D. |year=2006 |title=Smoke in the Stratosphere: What Wildfires have Taught Us About Nuclear Winter |journal=[[Eos (journal)|Eos, Transactions, American Geophysical Union]] |volume=87 |issue=52 Fall Meet. Suppl |pages=Abstract U14A–04 |url=http://www.agu.org/meetings/fm06/fm06-sessions/fm06_U14A.html |display-authors=3 |url-status=unfit |archiveurl=https://web.archive.org/web/20141006085234/http://www.agu.org/meetings/fm06/fm06-sessions/fm06_U14A.html |archivedate=October 6, 2014 }}</ref> A cumulonimbus flammagenitus may often form from the [[eruption column]] of a volcano.

Revision as of 10:07, 14 November 2019

Satellite image of a pyrocumulonimbus cloud formation over Argentina in 2018
For decades this "Hiroshima strike" photo was misidentified as the mushroom cloud of the atomic bomb that fell on 6th August 1945.[1][2] However, due to its much greater height, the scene was identified in March 2016 as the pyrocumulonimbus cloud that engulfed the city,[2] a fire that reached its peak intensity some three hours after the bomb.[3]
Picture of a pyrocumulonimbus cloud, taken from a commercial airliner cruising at about 10 km altitude.[4]

The cumulonimbus flammagenitus cloud (CbFg), also known as the pyrocumulonimbus cloud, is a type of cumulonimbus cloud that forms above a source of heat, such as a wildfire, and may sometimes even extinguish the fire that formed it.[5] It is the most extreme manifestation of a flammagenitus cloud. According to the American Meteorological Society’s Glossary of Meteorology, a flammagenitus is "a cumulus cloud formed by a rising thermal from a fire, or enhanced by buoyant plume emissions from an industrial combustion process."[6] Analogous to the meteorological distinction between cumulus and cumulonimbus, the cumulonimbus flammagenitus is a fire-aided or –caused convective cloud, like a flammagenitus, but with considerable vertical development. The CbFg reaches the upper troposphere or even lower stratosphere and may involve precipitation (although usually light),[citation needed] hail, lightning, extreme low-level winds, and in some cases even tornadoes.[7]

The CbFg was named following the discovery in 1998,[8] that extreme manifestations of this pyroconvection caused direct injection of large abundances of smoke from a firestorm into the lower stratosphere.[9][10][11][12][13][14] The aerosol of smoke comprising CbFg clouds can persist for weeks, and with that, reduce ground level sunlight in the same manner as the “nuclear winter" effect.[15][16] A cumulonimbus flammagenitus may often form from the eruption column of a volcano.

In 2002, various sensing instruments detected 17 distinct cumulonimbus flammageniti in North America alone.[17]

Alternate spellings and abbreviations for cumulonimbus flammagenitus that may be found in the literature include Cb-Fg, pyrocumulonimbus, pyro-cumulonimbus, pyroCb, pyro-Cb, pyrocb, and pyro-cb. [citation needed] The World Meteorological Organization does not recognize the cumulonimbus flammagenitus as a distinct cloud type, but instead classifies it simply as cumulonimbus.

2003 Canberra Firestorm

On 18 January 2003, a supercell thunderstorm formed from a cumulonimbus flammagenitus cloud[citation needed] associated with a severe wildfire, during the 2003 Canberra bushfires in Canberra, Australia. The supercell resulted in a large fire tornado, rated at EF3 on the fujita scale, the first confirmed violent fire tornado.[18][19] The tornado and associated fire killed 4 people and injured 492.

See also

References

  1. ^ "A Photo-Essay on the Bombing of Hiroshima and Nagasaki". University of Illinois at Urbana-Champaign. Retrieved December 4, 2016.
  2. ^ a b Broad, William J. (May 23, 2016). "The Hiroshima Mushroom Cloud That Wasn't". The New York Times. Retrieved December 4, 2016.
  3. ^ Toon et al. 2007, p. 1994.
  4. ^ Fromm, Michael; Alfred, Jerome; Hoppel, Karl; et al. (May 1, 2000). "Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998". Geophysical Research Letters. 27 (9): 1407–1410. Bibcode:2000GeoRL..27.1407F. doi:10.1029/1999GL011200. Archived from the original on January 6, 2009. Retrieved August 29, 2013.
  5. ^ Csifo, Noemi. "Fire Cloud Cumulus Cumulonimbus Weather". Sciences 360. R R Donelley. Retrieved 22 October 2013.
  6. ^ "AMS Glossary". American Meteorological Society. Retrieved 6 January 2012.[permanent dead link]
  7. ^ Fromm, M.; Tupper, A.; Rosenfeld, D.; Servranckx, R.; McRae, R. (2006). "Violent pyro-convective storm devastates Australia's capital and pollutes the stratosphere". Geophysical Research Letters. 33 (5): L05815. Bibcode:2006GeoRL..33.5815F. doi:10.1029/2005GL025161.
  8. ^ Fromm, Michael; Lindsey, Daniel T.; Servranckx, René; Yue, Glenn; Trickl, Thomas; Sica, Robert; Doucet, Paul; Godin-Beekmann, Sophie (2010). "The untold story of pyrocumulonimbus, 2010". Bulletin of the American Meteorological Society. 91 (9): 1193–1210. doi:10.1175/2010BAMS3004.1.
  9. ^ Fire-Breathing Storm Systems. NASA
  10. ^ Averill, Clare; Logan, Jennifer (August 19, 2004). "Smoke Soars to Stratospheric Heights". Earth Observatory. NASA. Retrieved March 10, 2013.
  11. ^ Fromm, Michael; Alfred, Jerome; Hoppel, Karl; et al. (May 1, 2000). "Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998". Geophysical Research Letters. 27 (9): 1407–1410. Bibcode:2000GeoRL..27.1407F. doi:10.1029/1999GL011200. Archived from the original on January 6, 2009. Retrieved August 29, 2013.
  12. ^ Fromm, M.; Stocks, B.; Servranckx, R.; et al. (2006). "Smoke in the Stratosphere: What Wildfires have Taught Us About Nuclear Winter". Eos, Transactions, American Geophysical Union. 87 (52 Fall Meet. Suppl): Abstract U14A–04. Archived from the original on October 6, 2014.{{cite journal}}: CS1 maint: unfit URL (link)
  13. ^ Fromm, M.; Servranckx, R. (2003). "Transport of forest fire smoke above the tropopause by supercell convection". Geophysical Research Letters. 30 (10): 1542. Bibcode:2003GeoRL..30.1542F. doi:10.1029/2002GL016820.
  14. ^ Jost, Hans-Jürg; Drdla, Katja; Stohl, Andreas; et al. (June 2, 2004). "In-situ observations of mid-latitude forest fire plumes deep in the stratosphere" (PDF). Geophysical Research Letters. 31 (11): L11101. Bibcode:2004GeoRL..3111101J. doi:10.1029/2003GL019253. CiteID L11101. Retrieved August 31, 2013.
  15. ^ Fromm, M.; Tupper, A.; Rosenfeld, D.; Servranckx, R.; McRae, R. (2006). "Violent pyro-convective storm devastates Australia's capital and pollutes the stratosphere". Geophysical Research Letters. 33 (5): L05815. Bibcode:2006GeoRL..33.5815F. doi:10.1029/2005GL025161.
  16. ^ Fromm, M.; Stocks, B.; Servranckx, R.; et al. (2006). "Smoke in the Stratosphere: What Wildfires have Taught Us About Nuclear Winter". Eos, Transactions, American Geophysical Union. 87 (52 Fall Meet. Suppl): Abstract U14A–04. Archived from the original on October 6, 2014.{{cite journal}}: CS1 maint: unfit URL (link)
  17. ^ Fire-Breathing Storm Systems. NASA
  18. ^ Anja Taylor (6 June 2013). "Fire Tornado". Australian Broadcasting Corporation. Retrieved 6 June 2013.
  19. ^ McRae, R; Sharpies, J; Wilkies, S; Walker, A (12 October 2012). "An Australian pyro-tornadogenesis event". Nat Hazards. 65 (3): 1801. doi:10.1007/s11069-012-0443-7.