Jump to content

Thyroid's secretory capacity: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Clinical significance: fixing multiple typos
Tags: Mobile edit Mobile app edit Android app edit
→‎Pathophysiological and therapeutic implications: Adding results of study on takotsubo syndrome.
Line 94: Line 94:
On the other hand, men treated with [[spironolactone]] are faced with decreasing SPINA-GT (in addition to rising [[thyroid antibody]] titres).<ref name="Krysiak_Spironolactone_2019">{{cite journal |last1=Krysiak |first1=R |last2=Kowalcze |first2=K |last3=Okopień |first3=B |title=The effect of spironolactone on thyroid autoimmunity in euthyroid men with Hashimoto's thyroiditis. |journal=Journal of Clinical Pharmacy and Therapeutics |volume=45 |issue=1 |pages=152–159 |date=14 September 2019 |doi=10.1111/jcpt.13046 |pmid=31520539|doi-access=free }}</ref> It has, therefore, been concluded that spironolactone may aggravate thyroid autoimmunity in men.<ref name="Krysiak_Spironolactone_2019"/>
On the other hand, men treated with [[spironolactone]] are faced with decreasing SPINA-GT (in addition to rising [[thyroid antibody]] titres).<ref name="Krysiak_Spironolactone_2019">{{cite journal |last1=Krysiak |first1=R |last2=Kowalcze |first2=K |last3=Okopień |first3=B |title=The effect of spironolactone on thyroid autoimmunity in euthyroid men with Hashimoto's thyroiditis. |journal=Journal of Clinical Pharmacy and Therapeutics |volume=45 |issue=1 |pages=152–159 |date=14 September 2019 |doi=10.1111/jcpt.13046 |pmid=31520539|doi-access=free }}</ref> It has, therefore, been concluded that spironolactone may aggravate thyroid autoimmunity in men.<ref name="Krysiak_Spironolactone_2019"/>


A study in [[euthyroid]] subjects with [[structural heart disease]] found that SPINA-GT predicts the risk of malignant [[arrhythmia]] including [[ventricular fibrillation]] and [[ventricular tachycardia]]<ref name = Mueller_AJC_2020>{{cite journal |last1=Müller |first1=Patrick |last2=Dietrich |first2=Johannes W. |last3=Lin |first3=Tina |last4=Bejinariu |first4=Alexandru |last5=Binnebößel |first5=Stephan |last6=Bergen |first6=Friederike |last7=Schmidt |first7=Jan |last8=Müller |first8=Sarah-Kristin |last9=Chatzitomaris |first9=Apostolos |last10=Kurt |first10=Muhammed |last11=Gerguri |first11=Shqipe |last12=Clasen |first12=Lukas |last13=Klein |first13=Harald H. |last14=Kelm |first14=Malte |last15=Makimoto |first15=Hisaki |title=Usefulness of Serum Free Thyroxine Concentration to Predict Ventricular Arrhythmia Risk in Euthyroid Patients with Structural Heart Disease |journal=The American Journal of Cardiology |date=January 2020 |volume=125 |issue=8 |pages=1162–1169 |doi=10.1016/j.amjcard.2020.01.019 |pmid=32087999}}</ref>. This applies to both incidence and event-free survival<ref name = Mueller_AJC_2020/>.
A study in [[euthyroid]] subjects with [[structural heart disease]] found that increased SPINA-GT predicts the risk of malignant [[arrhythmia]] including [[ventricular fibrillation]] and [[ventricular tachycardia]]<ref name = Mueller_AJC_2020>{{cite journal |last1=Müller |first1=Patrick |last2=Dietrich |first2=Johannes W. |last3=Lin |first3=Tina |last4=Bejinariu |first4=Alexandru |last5=Binnebößel |first5=Stephan |last6=Bergen |first6=Friederike |last7=Schmidt |first7=Jan |last8=Müller |first8=Sarah-Kristin |last9=Chatzitomaris |first9=Apostolos |last10=Kurt |first10=Muhammed |last11=Gerguri |first11=Shqipe |last12=Clasen |first12=Lukas |last13=Klein |first13=Harald H. |last14=Kelm |first14=Malte |last15=Makimoto |first15=Hisaki |title=Usefulness of Serum Free Thyroxine Concentration to Predict Ventricular Arrhythmia Risk in Euthyroid Patients with Structural Heart Disease |journal=The American Journal of Cardiology |date=January 2020 |volume=125 |issue=8 |pages=1162–1169 |doi=10.1016/j.amjcard.2020.01.019 |pmid=32087999}}</ref>. This applies to both incidence and event-free survival<ref name = Mueller_AJC_2020/>. SPINA-GT is also elevated in a significant subgroup of patients with [[takotsubo syndrome]]<ref>{{cite journal |last1=Aweimer |first1=A |last2=El-Battrawy |first2=I |last3=Akin |first3=I |last4=Borggrefe |first4=M |last5=Mügge |first5=A |last6=Patsalis |first6=PC |last7=Urban |first7=A |last8=Kummer |first8=M |last9=Vasileva |first9=S |last10=Stachon |first10=A |last11=Hering |first11=S |last12=Dietrich |first12=JW |title=Abnormal thyroid function is common in takotsubo syndrome and depends on two distinct mechanisms: results of a multicentre observational study. |journal=Journal of internal medicine |date=12 November 2020 |doi=10.1111/joim.13189 |pmid=33179374}}</ref>.


Specific secretory capacity (SPINA-GTs) is reduced in [[obesity]]<ref name=dietrich2002/> and [[autoimmune thyroiditis]].<ref name="Hoermann_ETJ_2016"/><ref>{{cite journal |last1=Hoermann |first1=Rudolf |last2=Midgley |first2=John E. M. |last3=Larisch |first3=Rolf |last4=Dietrich |first4=Johannes W. |title=Relational Stability in the Expression of Normality, Variation, and Control of Thyroid Function |journal=Frontiers in Endocrinology |date=7 November 2016 |volume=7 |pmid=27872610 |pmc=5098235 |doi=10.3389/fendo.2016.00142 |pages=142}}</ref>
Specific secretory capacity (SPINA-GTs) is reduced in [[obesity]]<ref name=dietrich2002/> and [[autoimmune thyroiditis]].<ref name="Hoermann_ETJ_2016"/><ref>{{cite journal |last1=Hoermann |first1=Rudolf |last2=Midgley |first2=John E. M. |last3=Larisch |first3=Rolf |last4=Dietrich |first4=Johannes W. |title=Relational Stability in the Expression of Normality, Variation, and Control of Thyroid Function |journal=Frontiers in Endocrinology |date=7 November 2016 |volume=7 |pmid=27872610 |pmc=5098235 |doi=10.3389/fendo.2016.00142 |pages=142}}</ref>

Revision as of 07:40, 17 November 2020

Thyroid's secretory capacity
SynonymsSPINA-GT, GT, T4 output, thyroid hormone output, thyroid's incretory capacity
Reference range1.41–8.67 pmol/s
Test ofMaximum amount of T4 produced by the thyroid in one second
LOINC82368-2

Thyroid's secretory capacity (GT, also referred to as thyroid's incretory capacity, maximum thyroid hormone output, T4 output or, if calculated from serum levels of thyrotropin and thyroxine, as SPINA-GT) is the maximum stimulated amount of thyroxine that the thyroid can produce in a given time-unit (e.g. one second).[1][2]

How to determine GT

Experimentally, GT can be determined by stimulating the thyroid with a high thyrotropin concentration (e.g. by means of rhTSH, i.e. recombinant human thyrotropin) and measuring its output in terms of T4 production, or by measuring the serum concentration of protein-bound iodine-131 after administration of radioiodine.[3]

In vivo, GT can also be estimated from equilibrium levels of TSH and T4 or free T4. In this case it is calculated with

or

: Theoretical (apparent) secretory capacity (SPINA-GT)
: Dilution factor for T4 (reciprocal of apparent volume of distribution, 0.1 l−1)
: Clearance exponent for T4 (1.1e-6 sec−1)
K41: Dissociation constant T4-TBG (2e10 l/mol)
K42: Dissociation constant T4-TBPA (2e8 l/mol)
DT: EC50 for TSH (2.75 mU/l)[1][4]

Specific secretory capacity

The ratio of SPINA-GT and thyroid volume VT (as determined e.g. by ultrasonography)

,

i.e.

or

is referred to as specific thyroid capacity (SPINA-GTs).[5] It is a measure for how much one ml of thyroid tissue can produce under conditions of maximum stimulation. Thereby, SPINA-GTs is an estimate for the endocrine quality of thyroid tissue.

Reference Range

Lower limit Upper limit Unit
1.41[1] 8.67[1] pmol/s

The equations and their parameters are calibrated for adult humans with a body mass of 70 kg and a plasma volume of ca. 2.5 l.[1]

Clinical significance

Validity

SPINA-GT is elevated in primary hyperthyroidism[6] and reduced in both primary hypothyroidism[7][8][9] and untreated autoimmune thyroiditis.[10] It has been observed to correlate (with positive direction) to resting energy expenditure[11], resting heart rate[12] and thyroid volume,[1][5] and (with negative direction) to thyroid autoantibody titres, which reflect organ destruction due to autoimmunity.[13] Elevated SPINA-GT in Graves' disease is reversible with antithyroid treatment.[11] While SPINA-GT is significantly altered in primary thyroid disorders, it is insensitive to disorders of secondary nature (e.g. pure pituitary diseases).[2]

Reliability

In silico experiments with Monte Carlo simulations demonstrated that both SPINA-GT and SPINA-GD can be estimated with sufficient reliability, even if laboratory assays have limited accuracy.[2] This was confirmed by longitudinal in vivo studies that showed that GT has lower intraindividual variation (i.e. higher reliability) than TSH, FT4 or FT3.[14]

Clinical utility

In clinical trials SPINA-GT was significantly elevated in patients suffering from Graves' disease and toxic adenoma compared to normal subjects.[1][6] It is also elevated in diffuse and nodular goiters, and reduced in untreated autoimmune thyroiditis.[1][10] In patients with toxic adenoma it has higher specificity and positive likelihood ratio for diagnosis of thyrotoxicosis than serum concentrations of thyrotropin, free T4 or free T3.[1] GT's specificity is also high in thyroid disorders of secondary or tertiary origin.[2]

Pathophysiological and therapeutic implications

Correlation of SPINA-GT with creatinine clearance suggested a negative influence of uremic toxins on thyroid biology.[15] In the initial phase of major non-thyroidal illness syndrome (NTIS) SPINA-GT may be temporarily elevated.[16][17] In chronic NTIS[18] as well as in certain non-critical chronic diseases, e.g. chronic fatigue syndrome[19] or asthma[20] SPINA-GT is slightly reduced.

In women, therapy with Metformin results in increased SPINA-GT, in parallel to improved insulin sensitivity.[21] This observation was reproducible in men with hypogonadism, but not in men with normal testosterone concentrations,[22] so that the described effect seems to depend on an interaction of metformin with sex hormones.[22][23] In hyperthyroid[6] men both SPINA-GT and SPINA-GD negatively correlate to erectile function, intercourse satisfaction, orgasmic function and sexual desire. Likewise, in women suffering from thyrotoxicosis elevated thyroid's secretory capacity predicts depression and sexual dysfunction.[24] Conversely, in androgen-deficient men with concomitant autoimmune thyroiditis, substitution therapy with testosterone leads to a decrease in thyroid autoantibody titres and an increase in SPINA-GT.[25]

In patients with autoimmune thyroiditis a gluten-free diet results in increased SPINA-GT (in parallel to sinking autoantibody titres).[26] Statin therapy has the same effect, but only if supply with vitamin D is sufficient.[27] Accordingly, substitution therapy with 25-hydroxyvitamin D leads to rising secretory capacity.[28][29][30] This effect is potentiated by substitution therapy with selenomethionine.[28][29] The effects of vitamin D and selenomethionine are attenuated in hyperprolactinaemia, suggesting an inhibitory effect of prolactin[31].

On the other hand, men treated with spironolactone are faced with decreasing SPINA-GT (in addition to rising thyroid antibody titres).[32] It has, therefore, been concluded that spironolactone may aggravate thyroid autoimmunity in men.[32]

A study in euthyroid subjects with structural heart disease found that increased SPINA-GT predicts the risk of malignant arrhythmia including ventricular fibrillation and ventricular tachycardia[33]. This applies to both incidence and event-free survival[33]. SPINA-GT is also elevated in a significant subgroup of patients with takotsubo syndrome[34].

Specific secretory capacity (SPINA-GTs) is reduced in obesity[1] and autoimmune thyroiditis.[5][35]

See also

References

  1. ^ a b c d e f g h i j Dietrich, J. W. (2002). Der Hypophysen-Schilddrüsen-Regelkreis. Berlin, Germany: Logos-Verlag Berlin. ISBN 978-3-89722-850-4. OCLC 50451543. OL 24586469M.
  2. ^ a b c d Dietrich, Johannes W.; Landgrafe-Mende, Gabi; Wiora, Evelin; Chatzitomaris, Apostolos; Klein, Harald H.; Midgley, John E. M.; Hoermann, Rudolf (9 June 2016). "Calculated Parameters of Thyroid Homeostasis: Emerging Tools for Differential Diagnosis and Clinical Research". Frontiers in Endocrinology. 7: 57. doi:10.3389/fendo.2016.00057. PMC 4899439. PMID 27375554.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ Bierich, J. R. (1964). "Endokrinologie". In H. Wiesener (ed.). Einführung in die Entwicklungsphysiologie des Kindes. Springer. p. 310. ISBN 978-3-642-86507-7.
  4. ^ Dietrich JW, Stachon A, Antic B, Klein HH, Hering S (Oct 2008). "The AQUA-FONTIS study: protocol of a multidisciplinary, cross-sectional and prospective longitudinal study for developing standardized diagnostics and classification of non-thyroidal illness syndrome". BMC Endocrine Disorders. 8 (1): 13. doi:10.1186/1472-6823-8-13. PMC 2576461. PMID 18851740.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  5. ^ a b c Hoermann, Rudolf; Midgley, John E.M.; Larisch, Rolf; Dietrich, Johannes W. (18 August 2016). "Relational Stability of Thyroid Hormones in Euthyroid Subjects and Patients with Autoimmune Thyroid Disease". European Thyroid Journal. 5 (3): 171–179. doi:10.1159/000447967. PMC 5091265. PMID 27843807.
  6. ^ a b c Krysiak, R; Marek, B; Okopień, B (2019). "Sexual function and depressive symptoms in men with overt hyperthyroidism". Endokrynologia Polska. 70 (1): 64–71. doi:10.5603/EP.a2018.0069. PMID 30307028.
  7. ^ Dietrich, J.; Fischer, M.; Jauch, J.; Pantke, E.; Gärtner, R.; Pickardt, C. R. "SPINA-THYR: A Novel Systems Theoretic Approach to Determine the Secretion Capacity of the Thyroid Gland". European Journal of Internal Medicine. 10 (Suppl. 1): S34.
  8. ^ Dietrich JW (Sep 2012). "Thyroid storm". Medizinische Klinik, Intensivmedizin und Notfallmedizin. 107 (6): 448–53. doi:10.1007/s00063-012-0113-2. PMID 22878518. S2CID 31285541.
  9. ^ Wang, X; Liu, H; Chen, J; Huang, Y; Li, L; Rampersad, S; Qu, S (21 April 2016). "Metabolic Characteristics in Obese Patients Complicated by Mild Thyroid Hormone Deficiency". Hormone and Metabolic Research. 48 (5): 331–7. doi:10.1055/s-0042-105150. PMID 27101096.
  10. ^ a b Hoermann, R; Midgley, JEM; Larisch, R; Dietrich, JW (19 July 2018). "The Role of Functional Thyroid Capacity in Pituitary Thyroid Feedback Regulation". European Journal of Clinical Investigation. 48 (10): e13003. doi:10.1111/eci.13003. PMID 30022470. S2CID 51698223.
  11. ^ a b Kim, Min Joo; Cho, Sun Wook; Choi, Sumin; Ju, Dal Lae; Park, Do Joon; Park, Young Joo (2018). "Changes in Body Compositions and Basal Metabolic Rates during Treatment of Graves' Disease". International Journal of Endocrinology. 2018: 9863050. doi:10.1155/2018/9863050. PMC 5960571. PMID 29853888.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  12. ^ Steinberger, Eva; Pilz, Stefan; Trummer, Christian; Theiler-Schwetz, Verena; Reichhartinge, Markus; Benninger, Thomas; Pandis, Marlene; Malle, Oliver; Keppel, Martin H.; Verheyen, Nicolas; Grübler, Martin R.; Voelkl, Jakob; Meinitzer, Andreas; März, Winfried (4 September 2020). "Associations of Thyroid Hormones and Resting Heart Rate in Patients Referred to Coronary Angiography". Hormone and Metabolic Research: a–1232–7292. doi:10.1055/a-1232-7292. PMID 32886945.
  13. ^ Krysiak, R; Kowalcze, K; Okopień, B (20 May 2019). "The Effect of Selenomethionine on Thyroid Autoimmunity in Euthyroid Men With Hashimoto Thyroiditis and Testosterone Deficiency". Journal of Clinical Pharmacology. 59 (11): 1477–1484. doi:10.1002/jcph.1447. PMID 31106856.
  14. ^ Dietrich JW, Landgrafe G, Fotiadou EH (2012). "TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis". Journal of Thyroid Research. 2012: 351864. doi:10.1155/2012/351864. PMC 3544290. PMID 23365787.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  15. ^ Rosolowska-Huszcz D, Kozlowska L, Rydzewski A (Aug 2005). "Influence of low protein diet on nonthyroidal illness syndrome in chronic renal failure". Endocrine. 27 (3): 283–8. doi:10.1385/endo:27:3:283. PMID 16230785.
  16. ^ Liu S, Ren J, Zhao Y, Han G, Hong Z, Yan D, Chen J, Gu G, Wang G, Wang X, Fan C, Li J (2013). "Nonthyroidal Illness Syndrome: is it Far Away From Crohn's Disease?". Journal of Clinical Gastroenterology. 47 (2): 153–9. doi:10.1097/MCG.0b013e318254ea8a. PMID 22874844. S2CID 35344744.
  17. ^ Wan, S; Yang, J; Gao, X; Zhang, L; Wang, X (22 July 2020). "Nonthyroidal Illness Syndrome in Patients With Short-Bowel Syndrome". JPEN. Journal of parenteral and enteral nutrition. doi:10.1002/jpen.1967. PMID 32697347.
  18. ^ Dietrich, J. W.; Ackermann, A.; Kasippillai, A.; Kanthasamy, Y.; Tharmalingam, T.; Urban, A.; Vasileva, S.; Schildhauer, T. A.; Klein, H. H.; Stachon, A.; Hering, S. (19 September 2019). "Adaptive Veränderungen des Schilddrüsenstoffwechsels als Risikoindikatoren bei Traumata". Trauma und Berufskrankheit. 21 (4): 260–267. doi:10.1007/s10039-019-00438-z. S2CID 202673793.
  19. ^ Ruiz-Núñez, Begoña; Tarasse, Rabab; Vogelaar, Emar F.; Janneke Dijck-Brouwer, D. A.; Muskiet, Frits A. J. (20 March 2018). "Higher Prevalence of "Low T3 Syndrome" in Patients With Chronic Fatigue Syndrome: A Case–Control Study". Frontiers in Endocrinology. 9: 97. doi:10.3389/fendo.2018.00097. PMC 5869352. PMID 29615976.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  20. ^ Bingyan, Zhan; Dong, Wei (7 July 2019). "Impact of thyroid hormones on asthma in older adults". Journal of International Medical Research. 47 (9): 4114–4125. doi:10.1177/0300060519856465. PMC 6753544. PMID 31280621.
  21. ^ Krysiak, R; Szkróbka, W; Okopień, B (June 2018). "Sex-Dependent Effect of Metformin on Serum Prolactin Levels In Hyperprolactinemic Patients With Type 2 Diabetes: A Pilot Study". Experimental and Clinical Endocrinology & Diabetes. 126 (6): 342–348. doi:10.1055/s-0043-122224. PMID 29169197.
  22. ^ a b Krysiak, R; Szkróbka, W; Okopień, B (6 August 2019). "The Impact of Testosterone on Metformin Action on Hypothalamic-Pituitary-Thyroid Axis Activity in Men: A Pilot Study". Journal of Clinical Pharmacology. 60 (2): 164–171. doi:10.1002/jcph.1507. PMID 31389032.
  23. ^ Krysiak, Robert; Kowalcze, Karolina; Wolnowska, Monika; Okopień, Bogusław (5 January 2020). "The impact of oral hormonal contraception on metformin action on hypothalamic‐pituitary‐thyroid axis activity in women with diabetes and prediabetes: A pilot study". Journal of Clinical Pharmacy and Therapeutics. doi:10.1111/jcpt.13105. PMID 31903641.
  24. ^ Krysiak, R; Kowalcze, K; Okopień, B (9 January 2019). "Sexual function and depressive symptoms in young women with overt hyperthyroidism". European Journal of Obstetrics, Gynecology, and Reproductive Biology. 234: 43–48. doi:10.1016/j.ejogrb.2018.12.035. PMID 30654201.
  25. ^ Krysiak, Robert; Kowalcze, Karolina; Okopień, Bogusław (10 June 2019). "The effect of testosterone on thyroid autoimmunity in euthyroid men with Hashimoto's thyroiditis and low testosterone levels". Journal of Clinical Pharmacy and Therapeutics. 44 (5): 742–749. doi:10.1111/jcpt.12987. PMID 31183891.
  26. ^ Krysiak, R; Szkróbka, W; Okopień, B (30 July 2018). "The Effect of Gluten-Free Diet on Thyroid Autoimmunity in Drug-Naïve Women with Hashimoto's Thyroiditis: A Pilot Study". Experimental and Clinical Endocrinology & Diabetes. 127 (7): 417–422. doi:10.1055/a-0653-7108. PMID 30060266. S2CID 51874521.
  27. ^ Krysiak, R; Szkróbka, W; Okopień, B (27 August 2018). "The Relationship Between Statin Action On Thyroid Autoimmunity And Vitamin D Status: A Pilot Study". Experimental and Clinical Endocrinology & Diabetes. 127 (1): 23–28. doi:10.1055/a-0669-9309. PMID 30149415.
  28. ^ a b Krysiak, Robert; Szkróbka, Witold; Okopień, Bogusław (October 2018). "The effect of vitamin D and selenomethionine on thyroid antibody titers, hypothalamic-pituitary-thyroid axis activity and thyroid function tests in men with Hashimoto's thyroiditis: a pilot study". Pharmacological Reports. 71 (2): 243–7. doi:10.1016/j.pharep.2018.10.012. PMID 30818086.
  29. ^ a b Krysiak, Robert; Kowalcze, Karolina; Okopień, Bogusław (December 2018). "Selenomethionine potentiates the impact of vitamin D on thyroid autoimmunity in euthyroid women with Hashimoto's thyroiditis and low vitamin D status". Pharmacological Reports. 71 (2): 367–73. doi:10.1016/j.pharep.2018.12.006. PMID 30844687.
  30. ^ Krysiak, Robert; Kowalcze, Karolina; Okopień, Bogusław (April 2019). "The effect of vitamin D on thyroid autoimmunity in euthyroid men with autoimmune thyroiditis and testosterone deficiency". Pharmacological Reports. 71 (5): 798–803. doi:10.1016/j.pharep.2019.04.010. PMID 31377561.
  31. ^ Krysiak, R; Kowalcze, K; Okopień, B (10 July 2020). "Hyperprolactinaemia attenuates the inhibitory effect of vitamin D/selenomethionine combination therapy on thyroid autoimmunity in euthyroid women with Hashimoto's thyroiditis: A pilot study". Journal of Clinical Pharmacy and Therapeutics. doi:10.1111/jcpt.13214. PMID 32649802.
  32. ^ a b Krysiak, R; Kowalcze, K; Okopień, B (14 September 2019). "The effect of spironolactone on thyroid autoimmunity in euthyroid men with Hashimoto's thyroiditis". Journal of Clinical Pharmacy and Therapeutics. 45 (1): 152–159. doi:10.1111/jcpt.13046. PMID 31520539.
  33. ^ a b Müller, Patrick; Dietrich, Johannes W.; Lin, Tina; Bejinariu, Alexandru; Binnebößel, Stephan; Bergen, Friederike; Schmidt, Jan; Müller, Sarah-Kristin; Chatzitomaris, Apostolos; Kurt, Muhammed; Gerguri, Shqipe; Clasen, Lukas; Klein, Harald H.; Kelm, Malte; Makimoto, Hisaki (January 2020). "Usefulness of Serum Free Thyroxine Concentration to Predict Ventricular Arrhythmia Risk in Euthyroid Patients with Structural Heart Disease". The American Journal of Cardiology. 125 (8): 1162–1169. doi:10.1016/j.amjcard.2020.01.019. PMID 32087999.
  34. ^ Aweimer, A; El-Battrawy, I; Akin, I; Borggrefe, M; Mügge, A; Patsalis, PC; Urban, A; Kummer, M; Vasileva, S; Stachon, A; Hering, S; Dietrich, JW (12 November 2020). "Abnormal thyroid function is common in takotsubo syndrome and depends on two distinct mechanisms: results of a multicentre observational study". Journal of internal medicine. doi:10.1111/joim.13189. PMID 33179374.
  35. ^ Hoermann, Rudolf; Midgley, John E. M.; Larisch, Rolf; Dietrich, Johannes W. (7 November 2016). "Relational Stability in the Expression of Normality, Variation, and Control of Thyroid Function". Frontiers in Endocrinology. 7: 142. doi:10.3389/fendo.2016.00142. PMC 5098235. PMID 27872610.{{cite journal}}: CS1 maint: unflagged free DOI (link)