Jump to content

Triphosgene

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 145.94.139.198 (talk) at 14:07, 3 June 2024 (Safety: More in line with source). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Triphosgene
Names
Preferred IUPAC name
Bis(trichloromethyl) carbonate
Other names
BTC
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.046.336 Edit this at Wikidata
UNII
  • InChI=1S/C3Cl6O3/c4-2(5,6)11-1(10)12-3(7,8)9 checkY
    Key: UCPYLLCMEDAXFR-UHFFFAOYSA-N checkY
  • InChI=1/C3Cl6O3/c4-2(5,6)11-1(10)12-3(7,8)9
    Key: UCPYLLCMEDAXFR-UHFFFAOYAA
  • ClC(Cl)(Cl)OC(=O)OC(Cl)(Cl)Cl
Properties
C3Cl6O3
Molar mass 296.748 g/mol
Appearance white solid
Density 1.780 g/cm3
Melting point 80 °C (176 °F; 353 K)
Boiling point 206 °C (403 °F; 479 K)
Reacts
Solubility *soluble in dichloromethane[1]
  • soluble in THF[2]
  • soluble in toluene[3]
Hazards
GHS labelling:
GHS06: ToxicGHS05: Corrosive[4]
Danger
H314, H330[4]
P260, P280, P284, P305+P351+P338, P310[4]
Safety data sheet (SDS) SDS Triphosgene
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Triphosgene (bis(trichloromethyl) carbonate (BTC) is a chemical compound with the formula OC(OCCl3)2. It is used as a solid substitute for phosgene, which is a gas and diphosgene, which is a liquid.[5][6] Triphosgene is stable up to 200 °C.[7] Triphosgene is used in a variety of halogenation reactions.[8]

Preparation

This compound is commercially available. It is prepared by exhaustive free radical chlorination of dimethyl carbonate:[6]

CH3OCO2CH3 + 6 Cl2 → CCl3OCO2CCl3 + 6 HCl

Triphosgene can be easily recrystallized from hot hexanes.

Uses

Triphosgene is used as a reagent in organic synthesis as a source of CO2+. It behaves like phosgene, to which it cracks thermally:

OC(OCCl3)2 ⇌ 3 OCCl2

Alcohols are converted to carbonates. Primary and secondary amines are converted to ureas and isocyanates.[6][7][9][10]

Triphosgene has been used to synthesize chlorides.[8] Some Alkyl chlorides are prepared by treating alcohols with a mixture of triphosgene and pyridine. Alkyl dichlorides and trichlorides can similarly be synthesized using triphosgene. Vinyl chlorides are synthesized from ketones using triphosgene and DMF to form a Vilsmeier reagent, followed by a ring opening by chloride ions. Aryl chlorides can also be produced using a Vilsmeier reagent from triphosgene and DMF.

Safety

The vapor pressure of Triphosgene is sufficiently high for it to reach concentrations that are considered toxicologically unsafe.[11] While several properties of triphosgene are not yet readily available, it is known that it is very toxic if inhaled. A toxic gas is emitted if it comes in contact with water.[12] There is a lack of information and variability regarding the proper handling of triphosgene. It is assumed to have the same risks as phosgene.[13][14]

See also

References

  1. ^ Ouimet MA, Stebbins ND, Uhrich KE (August 2013). "Biodegradable coumaric acid-based poly(anhydride-ester) synthesis and subsequent controlled release". Macromolecular Rapid Communications. 34 (15): 1231–1236. doi:10.1002/marc.201300323. PMC 3789234. PMID 23836606.
  2. ^ Tang S, Ikai T, Tsuji M, Okamoto Y (January 2010). "Immobilization and chiral recognition of 3,5-dimethylphenylcarbamates of cellulose and amylose bearing 4-(trimethoxysilyl)phenylcarbamate groups". Chirality. 22 (1): 165–172. doi:10.1002/chir.20722. PMID 19455617.
  3. ^ Zhou Y, Gong R, Miao W (September 2006). "New Method of Synthesizing N-Alkoxycarbonyl-N-arylamide with Triphosgene". Synthetic Communications. 36 (18): 2661–2666. doi:10.1080/00397910600764675. S2CID 98578315.
  4. ^ a b c Sigma-Aldrich Co., Triphosgene.
  5. ^ Roestamadji, Juliatiek; Mobashery, Shahriar (2001). "Bis(trichloromethyl) Carbonate". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rb200. ISBN 0471936235.
  6. ^ a b c Heiner Eckert; Barbara Forster (1987). "Triphosgene, a Crystalline Phosgene Substitute". Angew. Chem. Int. Ed. Engl. 26 (9): 894–895. doi:10.1002/anie.198708941.
  7. ^ a b Akiba T, Tamura O, Terashima S (1998). "(4R,5S)-4,5-Diphenyl-3-Vinyl-2-Oxazolidinone". Organic Syntheses. 75: 45. doi:10.15227/orgsyn.075.0045.
  8. ^ a b Ganiu MO, Nepal B, Van Houten JP, Kartika R (November 2020). "A decade review of triphosgene and its applications in organic reactions". Tetrahedron. 76 (47): 131553. doi:10.1016/j.tet.2020.131553. PMC 8054975. PMID 33883783.
  9. ^ Tsai JH, Takaoka LR, Powell NA, Nowick JS (2002). "Synthesis of Amino Acid Ester Isocyanates: Methyl (S)-2-Isocyanato-3-Phenylpropanoate". Organic Syntheses. 78: 220. doi:10.15227/orgsyn.078.0220.
  10. ^ Du H, Zhao B, Shi Y (2009). "Pd(0)-Catalyzed Diamination of Trans-1-Phenyl-1,3-Butadiene with Di-tert-Butyldiaziridinone as Nitrogen Source". Organic Syntheses. 86: 315. doi:10.15227/orgsyn.086.0315.
  11. ^ Cotarca L, Geller T, Répási J (2017-09-15). "Bis(trichloromethyl)carbonate (BTC, Triphosgene): A Safer Alternative to Phosgene?". Organic Process Research & Development. 21 (9): 1439–1446. doi:10.1021/acs.oprd.7b00220.
  12. ^ "Material Safety Data Sheet: Triphosgene" (PDF). Acros Organics. 2009. Retrieved February 17, 2022.
  13. ^ Damle SB (February 1993). "Safe handling of diphosgene, triphosgene". Chemical & Engineering News. 71 (6): 4.
  14. ^ Pauluhn J (February 2021). "Phosgene inhalation toxicity: Update on mechanisms and mechanism-based treatment strategies". Toxicology. 450: 152682. doi:10.1016/j.tox.2021.152682. PMID 33484734. S2CID 231693591.