Jump to content

Draft:Juris Svenne

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Ldm1954 (talk | contribs) at 11:19, 1 July 2024 (Ce for clarity). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
  • Comment: He may well qualify for notable, but you need to do some work first:
    *Reduce papers to the most cited 5
    *Try and find elsewhere a list of his pubs to use
    *Include cites to all his positions, critical.
    *Include major national awards (not grants). This demonstrate that his peers thought him notable.
    Keep at it, these pages need work and getting them right takes time. Ping me if needed once you have done much of this. Ldm1954 (talk) 11:18, 1 July 2024 (UTC)

Dr.
Juris Svenne
Born(1939-02-14)February 14, 1939
DiedMay 25, 2024(2024-05-25) (aged 85)
NationalityLatvian, Canadian
Alma materMassachusetts Institute of Technology, University of Toronto
Known forMulti-Channel Algebraic Scattering Theory
SpouseAija Svenne (married +60 yrs)
Children3

Juris Pētēris Svenne (14 February, 1939 – 25 May, 2024) was a Latvian-Canadian physicist. In 2001 he was elected to the Latvian Academy of Science.

Education

[edit]

Post-Doctoral Positions

[edit]

Work as a Professor

[edit]

Juris Svenne began work as an Assistant Professor at the University of Manitoba in 1969. In 1980, he became a Full Professor in the Physics Department. From 1987-1988 Juris was Associate Head of the Department of Physics, then from 1989-1994 he held the position of Associate Dean of Science. Finally, from 1 July - 31 Dec 1991, he was Acting Dean of Science.

Juris Svenne was a member of the Winnipeg Institute for Theoretical Physics. He was a doctoral advisor for 3 Ph.D. students, and one M.Sc. student. After retiring from his work as a professor at the University of Manitoba in 2004, Juris was appointed Senior Scholar in the Department of Physics and Astronomy, where he remained active in research.

List of Publications

[edit]
  • Non-localities in nucleon-nucleus potentials and their effects in nucleon-nucleus scattering..[1]
  • Particle-unstable and weakly-bound nuclei with a Sturmian approach that preserves the Pauli principle[2].
  • Collective-coupling analysis of spectra of mass-7 isobars: 7He, 7Li, 7Be, 7B[3].
  • Predicting narrow states in the spectrum of a nucleus beyond the proton drip line[4].
  • Low-energy neutron-12C analyzing powers: results from a multichannel algebraic scattering theory[5].
  • Comparison between two methods of solution of coupled equations for low-energy scattering[6]
  • Compound and quasi-compound states in low-energy scattering of nucleons protons from 12C[7].
  • Role of the Pauli principle in collective-model coupled-channel calculations[8].
  • An algebraic solution of the multichannel problem applied to low energy nucleon-nucleus scattering[9].
  • Three-Body Dynamics in One Dimension: A Test Model for the Three-Nucleon System with Irreducible Pionic Diagrams[10].
  • Practical Approximation Scheme for the Pion Dynamics in the Three-Nucleon System[11].
  • Spin Observables for Pion Production from pd Collisions[12].
  • Spin Observables for the p+d<-->p+t reaction around the D resonance[13].
  • A Meson-Exchange Isobar Model for the p+d<-->p+p reaction[14].
  • Analysis of Compound and Quasi-Compound Resonances in a Multi-Channel, Finite-Rank Model[15].
  • Pion absorption on 3He. II: Antisymmetrization and angular decomposition of the Faddeev-based amplitude[16].
  • Re-examination of the pNNN-NNN problem[17].
  • Evidence for Three-Body Forces on p-d Breakup at 25 MeV[18]?
  • np Elastic Scattering Analyzing Power Characteristics at Intermediate Energies[19].
  • Resonances and Time-Delay in Three-Body Scattering[20].
  • Charge Symmetry Breaking in np Elastic Scattering at 477 MeV[21].
  • Form Factors of Finite-Rank Potentials in Phenomenological Calculations[22].
  • Proton Target Polarization Measured with a Polarized Neutron Beam at 477 MeV[23].
  • Test of Charge Symmetry in Neutron-Proton Scattering at 477 MeV[24].
  • Charge-Symmetry Breaking in Neutron-Proton Scattering: Isospin-Mixing Parameter[25].
  • Spline-Galerkin solution of integral equations for three-body scattering above break-up[26].
  • Cluster Expansion for Three-Body Scattering above Breakup[27].
  • Detection Equipment for a Test of Charge Symmetry in n-p Elastic Scattering[28].
  • The Neutron Beam Facility at TRIUMF[29].
  • Possible Evidence for Sensitivity to the Two-Body Tensor Force in the Reaction d + p --> p + p + n.[30].
  • Cluster Expansion, Multichannel Scattering, and the Optical Potential[31].
  • Three-body Calculations of Elastic Scattering and Stripping of Deuterons on 16O[32].
  • A Relation Between Average Kinetic Energy and Mean-square Radius in Nuclei[33].
  • Proton-deuteron Break-up Cross Sections in Collinear Geometry at 28.6 MeV[34].
  • Fourteen Years of Self-Consistent Field Calculations: what has been learned[35]?
  • The Spin-Orbit Force and the Deformation of 12C[36].
  • Interpretation of Inversions of Single-Particle Levels in Self-Consistent Field Theories[37].
  • A Variational Calculation of Light Nuclei using Nearly-Orthogonal Functions[38].
  • How Good is the Hartree-Fock Approximation for 16O[39]?
  • Compressibility Under Deformation of the Nuclear Hartree-Fock Field[40].
  • The Proton Densities in 40Ca and 48Ca in the Hartree-Fock Approximation[41].
  • Isospin Mixing of Hartree-Fock Solutions[42].
  • Octupole Deformations in the 2s-1d Shell[43].
  • A Coupled-Vibration Model for Even-Even Nuclei in the (s,d) Shell[44]
  • Origin of the Spin-Orbit Splitting in Nuclear Hartree- Fock Calculations[45].
  • E2 Transitions and the Intrinsic Structure of the 1f-2p Shell Nuclei[46].
  • Structure of the Self-Consistent Solutions for Even- Even Nuclei in the 2p-1f Shell[47].
  • Unrestricted Hartree-Fock Treatment of Finite Nuclei[48].
  • Saturation in Hartree-Fock Calculations Using Density Dependent Forces with Hard Cores[49].
  • Parity Mixing in Nuclear Hartree-Fock Calculations[50].
  • Realistic Potentials and Shell Model[51].
  • Hartree-Fock Calculation for Finite Nuclei with Non-Local Two-Body Potential[52].
  • Generalized Hartree-Fock Calculation with an Effective Interaction for Finite Nuclei[53].


References

[edit]
  1. ^ P. Fraser, K. Amos, S. Karataglidis, L. Canton, G. Pisent, and J.P. Svenne, European Physical Journal A, 35, 69-80 (2008)
  2. ^ L. Canton, K. Amos, S. Karataglidis, G. Pisent, J.P. Svenne, and D. van der Knijff, Nuclear Physics A790, 251c - 256c (2007)
  3. ^ L. Canton, G. Pisent, K. Amos, S. Karataglidis, and D. van der Knijff, Phys. Rev. C 74, 0604072 (2006); arXiv: nucl-th/0604072
  4. ^ L. Canton, G. Pisent, J.P. Svenne, K. Amos and S. Karataglidis, Phys. Rev. Letters, 96, 072502 (2006); arXiv: nucl-th/0510067
  5. ^ J.P. Svenne, K. Amos, S. Karataglidis, D. van der Knijff, L. Canton and G. Pisent, Phys. Rev. C, 73, 027601 (2006); arXiv: nucl-th/0510088
  6. ^ K. Amos, S. Karataglidis, D. van der Knijff, L. Canton, G.Pisent, and J.P. Svenne, Physical Review C 72 , 064604 (2005); arXiv: nucl-th/0510085
  7. ^ G. Pisent, J.P. Svenne, L. Canton, K. Amos, S. Karataglidis, D. van der Knijff; Physical Review C, 72, 014601 (2005); arXiv: nucl-th/0502016
  8. ^ L. Canton, G. Pisent, J.P. Svenne, D. van der Knijff K. Amos, and S. Karataglidis; Physical Review Letters, 94, 122503 (2005); arXiv: nucl-th/0409050
  9. ^ K. Amos, L. Canton, G. Pisent, J.P. Svenne, and D. van der Knijff; Nuclear Physics A728, 65-95 (2003)
  10. ^ T. Melde, L. Canton and J.P. Svenne, Few-Body Systems, 32, 143-168 (2002)
  11. ^ L. Canton, T. Melde, and J.P. Svenne, Physical Review C, 63, 034004-1-10 (2001)
  12. ^ L. Canton, G. Pisent, W. Schadow, and J.P. Svenne, Nuclear Physics, A684, 417c-419c (2001)
  13. ^ L. Canton, G. Cattapan, G. Pisent, W.Schadow, and J.P. Svenne, Physical Review C 57, 1588-1594 (1998).
  14. ^ L. Canton, G. Cattapan, P.J. Dortmans, G. Pisent, and J.P. Svenne, Canadian Journal of Physics,74, 209-225 (1996).
  15. ^ G. Pisent and J.P. Svenne, Physical Review C 51,3211-3221 (1995)
  16. ^ Luciano Canton, J.P. Svenne and Giorgio Cattapan. Physical Review C 48, 1562-1572 (1993)
  17. ^ Giorgio Cattapan, Luciano Canton and J.P. Svenne. il Nuovo Cimento, 106A, 1229-1246. (1993)
  18. ^ M.B.Wango, J. Birchall, J.S.C. McKee, and J.P. Svenne. Canadian Journal of Physics 68, 1200-1202 (1990)
  19. ^ R. Abegg, M.Ahmad, D. Bandyopadhyay, J. Birchall, E. Cairns, K.Chantziantoniou, G.H. Coombes, C.A. Davis, N.E. Davison, P.P.J. Delheij, P.W. Green, L.G.Greeniaus, H.P. Gubler, D.C. Healey, C. Lapointe, W.P. Lee, W.J. McDonald, C.A. Miller, G.A. Moss, S.A.Page, G.R. Plattner, P.R. Poffenberger, W.D. Ramsay, N.L.Rodning, G. Roy, J. Soukup, J.P. Svenne, R.R. Tkachuk, W.T.H. van Oers, G.D. Wait, J.W.Watson, Y.Ye and Y.P. Zhang. Phys. Rev. C 40, 2406-2409 (1989).
  20. ^ J.P. Svenne, T.A. Osborn, G. Pisent, and D. Eyre. Physical Review C 40, 1136-1146 (1989)
  21. ^ R. Abegg, D. Bandyopadhyay, J. Birchall, E. Cairns, H. Coombes, C.A. Davis, N.E. Davison, P.P.J. Delheij, P.W. Green, L.G.Greeniaus, H.P. Gubler, D.C. Healey, C. Lapointe, W.P. Lee, W.J. McDonald, C.A. Miller, G.A. Moss, G.R. Plattner, P.R. Poffenberger, W.D. Ramsay, G. Roy, J. Soukup, J.P. Svenne, R. Tkachuk, W.T.H. van Oers, G.D. Wait, and Y.P. Zhang. Phys. Rev. D 39, 2464-2483 (1989).
  22. ^ G. Pisent and J.P. Svenne. il Nuovo Cimento, 97A, 52-64 (1987)
  23. ^ R. Abegg, D. Bandyopadhyay, J. Birchall, E. Cairns, H. Coombes, C.A. Davis, N.E. Davison, P.P.J. Delheij, P.W. Green, L.G.Greeniaus, H.P. Gubler, D.C. Healey, C. Lapointe, W.P. Lee, W.J. McDonald, C.A. Miller, G.A. Moss, G.R. Plattner, P.R. Poffenberger, W.D. Ramsay, G. Roy, J. Soukup, J.P. Svenne, R. Tkachuk, W.T.H. van Oers, G.D. Wait, and Y.P. Zhang. Nuclear Instruments and Methods, A254, 469-471 (1987)
  24. ^ R. Abegg, D. Bandyopadhyay, J. Birchall, E. Cairns, H. Coombes, C.A. Davis, N.E. Davison, P.P.J. Delheij, P.W. Green, L.G.Greeniaus, H.P. Gubler, D.C. Healey, C. Lapointe, W.P. Lee, W.J. McDonald, C.A. Miller, G.A. Moss, G.R. Plattner, P.R. Poffenberger, W.D. Ramsay, G. Roy, J. Soukup, J.P. Svenne, R. Tkachuk, W.T.H. van Oers, G.D. Wait, and Y.P. Zhang. Phys. Rev. Letters, 56, 2571-2574 (1986)
  25. ^ Lei Ge and J.P. Svenne, Physical Review C 33, 417-421 (1986) [ERRATUM: C 34, 756 (1986)]
  26. ^ Ayse Alaylioglu, D. Eyre, M. Brannigan and J.P. Svenne, Journal of Computational Physics, 62, 383-399 (1986)
  27. ^ D. Eyre and J.P. Svenne, Physics Letters B, 162B, 11-14 (1985)
  28. ^ R. Abegg, J. Birchall, E. Cairns, H. Coombes, C.A. Davis, N.E. Davison, P.W. Green, L.G.Greeniaus, H.P. Gubler, W.P. Lee, W.J. McDonald, C.A. Miller, G.A. Moss, G.R. Plattner, P.R. Poffenberger, G. Roy, J. Soukup, J.P. Svenne, R. Tkachuk, W.T.H. van Oers, and Y.P. Zhang, Nucl. Instr. A234, 20-29 (1985)
  29. ^ R. Abegg, J. Birchall, E. Cairns, H. Coombes, C.A. Davis, N.E. Davison, P.W. Green, L.G.Greeniaus, H.P. Gubler, W.P. Lee, W.J. McDonald, C.A. Miller, G.A. Moss, G.R. Plattner, P.R. Poffenberger, G. Roy, J. Soukup, J.P. Svenne, R. Tkachuk, W.T.H. van Oers, and Y.P. Zhang, Nucl. Instr. A234, 11-19 (1985)
  30. ^ J.P.Svenne, J.Birchall and J.S.C.McKee, Physics Letters 119B, 269-271 (1982)
  31. ^ D.Eyre, T.A.Osborn and J.P.Svenne. Phys. Rev. C 24, 2409-2420 (1981)
  32. ^ T.Aytimur and J.P.Svenne. Can. J. of Physics, 58, 1026-1039 (1980)
  33. ^ J.P.Svenne. J. of Physics G 6, 465-472 (1980)
  34. ^ J.Birchall, J.P.Svenne, M.S. de Jong, J.S.C.McKee, D.Ramsay, M.S.A.L. Al-Ghazi and N.Videla. Phys. Rev. C 20, 1585-88 (1979)
  35. ^ J.P.Svenne. Advances in Nuclear Physics, chapter 3 in vol. 11, pp 179-262 (1979)
  36. ^ J.P.Svenne and R.S.Mackintosh. Phys. Rev. C 18, 983-990 (1978)
  37. ^ R.L.Becker and J.P.Svenne. Phys. Rev. C 12, 2067-2071 (1975)
  38. ^ N.E.Reid, N.E.Davison and J.P.Svenne. Phys. Rev. C 9, 1882-1900 (1974)
  39. ^ J.C.Parikh and J.P.Svenne. Phys. Rev. C 6, 34-38 (1972)
  40. ^ B.Castel and J.P.Svenne. Can. J. Phys. 49, 2028-2030 (1971)
  41. ^ A.Lande and J.P. Svenne. Nucl. Phys. A164, 49-55 (1971)
  42. ^ D.M.Brink and J.P.Svenne. Nucl. Phys. A154, 449-457 (1970)
  43. ^ B.Castel and J.P.Svenne. Can. J. Phys. 47,1393-1395 (1969)
  44. ^ B.Castel and J.P.Svenne. Nucl. Phys. A127,141-148 (1969)
  45. ^ A.Lande and J.P.Svenne. Nucl. Phys. A124, 241-252 (1969)
  46. ^ K.H.Bhatt, J.C.Parikh and J.P.Svenne. Phys. Rev. Lett. 21, 1354-1357 (1968)
  47. ^ J.C.Parikh and J.P.Svenne. Pys. Rev. 174, 1343-1356 (1968)
  48. ^ W.H.Bassichis, A.K.Kerman and J.P.Svenne. Phys Rev. 160, 746-752 (1967)
  49. ^ A.Lande and J.P.Svenne. Phys. Lett. 25B, 91-94 (1967)
  50. ^ W.H. Bassichis and J.P.Svenne. Phys. Rev. Lett. 18, 80-82 (1967)
  51. ^ C.M.Shakin, J.P.Svenne and Y.R.Waghmare. Phys. Rev. 149, 772-777 (1966)
  52. ^ A.K.Kerman, J.P.Svenne and F.M.H.Villars. Phys. Rev. 147, 710-714 (1966)
  53. ^ C.M.Shakin, J.P.Svenne and Y.R.Waghmare. Phys. Lett. 21, 209-210 (1966)