Talk:Oganesson
Oganesson is a featured article; it (or a previous version of it) has been identified as one of the best articles produced by the Wikipedia community. Even so, if you can update or improve it, please do so. | ||||||||||||||||||||||||||||
Oganesson is part of the Noble gases series, a good topic. This is identified as among the best series of articles produced by the Wikipedia community. If you can update or improve it, please do so. | ||||||||||||||||||||||||||||
|
Standard Atomic Weight
I've noticed some confusion about the required entry in the standard atomic weight box for many elements. For wholly synthetic radioactive elements, the term is used to describe the mass number for the isotope with the longest known half life. For ununoctium, this is 294 by definition. Many people have used predictions calculated on Apsidium. However, there are serious problems with this: a) it's not real science b) the value provided is a 'significant mass atom' value, which isn't an official term c) the mass number of the most stable isotope for a superheavy element is almost entirely determined by shell effects and in particular the height of the fission barrier. The calculations of this require real maths! In summary, if you want wikipedia to be accurate, do not reference apsidium! Drjezza (talk) 12:43, 9 January 2008 (UTC)
- I agree; similarly, all the "predicted" melting and boiling points and such should be removed unless they refer to a real source such as a journal article and not a website which got them out of who-knows-where. --Itub (talk) 13:18, 9 January 2008 (UTC)
- the critical points are debatable. It will be extremely expensive to find it experimentally and theoretically, several different points are predicted. For example one reference above says that the element might be solid at normal conditions. Nergaal (talk) 17:21, 9 January 2008 (UTC)
- It is a joke to publish boiling points. It is the stupidest thing imaginable. How can one atom have a boiling point? I would like to see this very much removed.Mitchandre (talk) 21:12, 21 January 2008 (UTC)
- The boiling point can be estimated using the methods discussed in the references. There is some uncertainty, but it is still serious science (although of theoretical). --Itub (talk) 21:33, 21 January 2008 (UTC)
- It is not serious. What is the boiling point of a single atom of carbon? What phase would it even be? You say there is uncertainty, but that puts it nicely, its illogical to assign bulk properties to single atoms. In the end you do a disservice to science, by ignoring fundamental tenets of atom-at-a-time chemistry just in order to be internally consistent with other elemental wikipedia pages. That being said, I know you are taking a very balanced approach to this, but in this case it's just silly.Mitchandre (talk) 00:14, 22 January 2008 (UTC)'
- thermodynamical properties refer to A BULK!!!! the boiling temperature is determined THEORETICALLY for a buck of a substance, not for 3 atoms. Nergaal (talk) 02:10, 22 January 2008 (UTC)
- by the way, did you even read the references before you started trolling here? did you read the extrapolated word in from of the value of the boiling point???? if no, please troll on some other page. Nergaal (talk) 02:11, 22 January 2008 (UTC)
- Saying you are about to write something silly doesn't excuse the silliness. The bulk argument makes no sense for two reasons, you could never make enough. Even if you could, the intense radiation generated would change any measured macroscopic quantity. Trolling, I guess if you confuse passion for trolling, I suppose. I'm in the field, so it just really irks the rational part of the brain. Mitchandre (talk) 08:23, 22 January 2008 (UTC)
- Since you are in the field, why don't you write a letter to the editor of J. Phys. Chem. A criticizing the theoretical paper from which we got the predicted boiling point? Once you get it published, we can quote it on Wikipedia. --Itub (talk) 09:11, 22 January 2008 (UTC)
- Suppose you are completely wrong and one of the not-yet-discovered isotopes will have a half-life on the order of days (enough to obtain miligram quantities). Then what is the point of your entire argument? As for the second part of the argument, similarly people could have said about francium that it is so radioactive and reactive that is no point to think about the melting temperature of the pure metal. Yet, francium has a determined melting point, mostly because techniques have allowed to work with both high radioactivity and reactivity - this is even though the actual value of the melting point has little appicability (yet). The latter will not be the case for Uuo. The first one is probably much harder to control, but you should never predict that breakthroughs will not happen. AND, since you completely skipped over this idea it is OBVIOUS you are not from the field (of research). You may work with some radioactive materials, but it is definately not real research. If you are truly passionate, then I suggest you switch to (real) reasearch or at least learn about it. Nergaal (talk) 12:07, 22 January 2008 (UTC)
- Let me just say first, I'm not interested in furthering my argument against including the bulk data, I willfully concede this point. Kind of annoying to have to prove credentials but here you go. http://heavyelements.lbl.gov/mitch.htm Remember, even if a longer half-life was found in the couple day region, it would still take months just to make a few atoms of the element; so yes you still can't make enough for bulk measurements that way. Also, due to the nature of heavy element synthesis, something that decays on the order of days would be extraordinarily hard to detect out of normal background in one of these experiments. 2nd point, Radiation affects are a known problem, I'm not sure how the Francium melting point was determined, but I assume it was done with this in mind. Mitchandre (talk) 01:27, 29 February 2008 (UTC)
A suggestion for October 16, 2008
I know its quite a ways off, but I think we could nominate this article for Today's FA for October 16, 2008. I just wanted to voice the idea now so hopefully someone will remember to nominate it. Thingg⊕⊗ 01:30, 22 January 2008 (UTC)
Moscowium?
I've translated the two Russian articles used as references in the main article. The short article clearly indicates that one of the names suggested is "московий" , for which the Cyrillic translates to Moskovium, not Moscowium. The Russians would not use an Anglicised form of the name of their City! In addition, the longer article confirms the suggestion relating to "москA" (Moskva - Moscow) but also indicates the suggestion relating to Flerov i.e Flerovium. Although this name is loosely linked to element 102 it is unlikely banned by IUPAC naming rules.--Drjezza (talk) 20:20, 7 February 2008 (UTC)
- This is surprising because this element is a noble gas and (except helium) the noble gases as a rule end in -on, not -ium. Georgia guy (talk) 20:57, 7 February 2008 (UTC)
- Yes, why not Moscowion? Because it sounds retarded? —Preceding unsigned comment added by 89.212.134.219 (talk) 19:37, 25 February 2008 (UTC)
True. However, IUPAC (the people in charge) have stipulated that all new elements must be given names ending in -ium in order to provide consistency. In addition, the name of a new element will come before any chemistry is determined so using group-type endings, like -ine and -on are is permature, especially given the uncertainty in the chemistry that they will actually portray.--Drjezza (talk) 21:45, 7 February 2008 (UTC)
- But k is not proper Latin or English for the c (not "s") sound. The name would be moscovium. As in muscovite. k should be a mid-aspirant, not a stop. -lysdexia 11:32, 14 March 2008 (UTC) —Preceding unsigned comment added by 68.123.4.199 (talk)
image
I normally wouldn't bother, but since this is a FA, the periodic table image should be redone. The last update used the reduced 800-px thumb rather than the full resolution image. kwami (talk) 22:49, 13 April 2008 (UTC)
error?
Don't want to change this on an FA I'm not involved with, but "all isotopes with an atomic number above 101 decay radioactively with a halflife under a day" appears to be wrong. Dubnium is said to have an isotope at 37 hrs. kwami (talk) 09:32, 3 July 2008 (UTC)
- It has been modified in the past to reflect this, but I think there was a discussion about weather the half life was either 32, 26, or 16 hours. I don't remember exactly what was the resolution to the debate, but it seems like it was 16? Nergaal (talk) 09:53, 3 July 2008 (UTC)
- But the Dubnium isotopes article has not been brought into agreement, unless it's been modified since then. (And the table of isotopes now shows Db in pink. I did that, based on the isotopes article.) kwami (talk) 10:04, 3 July 2008 (UTC)
Heaviest gas?
The article claims that monatomic ununoctium would not be the gas with highest atomic/molecular weight (and thus, highest density), citing uranium hexafluoride as heavier. However, according to Uranium hexafluoride, that compound is solid at standard conditions. Does someone know which statement is correct? Also, what is the heaviest known gas at standard conditions, if not UF6 ?--Roentgenium111 (talk) 16:32, 10 July 2008 (UTC)
- UF6 is solid under standard conditions, but people often think of it as a gas because it is volatile enough to be handled as a gas in certain industrial processes. If you really want something that is a gas at 1 atm and 298 K, the best I can think of is TeF6, which sublimes at -39 deg C and has a molar mass of 241, which is larger than that of radon. On a hot day, you could think of S2F10, which boils at 30 deg C and has a molar mass of 254, or S2F10O, which boils at 31 deg C and has a molar mass of 270. --Itub (talk) 17:18, 10 July 2008 (UTC)
- Thanks to Itub for the detailed information! So Uuo 'would be the densest gas at standard conditions, since it has an atomic weigt of 292. (Apparently someone already changed the article accordingly.) I wonder if there is a theoretical limit on the density of gases, which might forbide Uuo to be gaseous...--Roentgenium111 (talk) 15:59, 28 July 2008 (UTC)
- I found a heavier gas! Tungsten hexafluoride has a boiling point of 17 °C and a molar mass of 297.83. I forgot to think about the transition metals when I was looking for heavy hexafluorides, but then, when looking for a lighter analogue of uranium hexafluoride, I remembered that uranium is chemically similar to tungsten (it used to be below tungsten in the periodic table until 1944 or so). --Itub (talk) 16:42, 28 July 2008 (UTC)
There's a problem
Although the boiling point and critical point given are both sourced, they are to different articles and contradict one another. The critical T and P given would imply a boiling temperature around 260 K by analogy with the other noble gases, whereas its being a solid would require a much higher critical point.