Jump to content

Centipede

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 89.212.75.6 (talk) at 19:33, 18 April 2009 (→‎Ecology). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Centipedes
Temporal range: Silurian - Recent
Scientific classification
Kingdom:
Phylum:
Subphylum:
Class:
Chilopoda

Latreille, 1817
Orders and Families

See text

Centipedes (from Latin prefix centi-, "hundred", and Latin pes,pedis, "foot") are arthropods belonging to the class Chilopoda and the Subphylum Myriapoda. They are elongated metameric animals with one pair of legs per body segment. A key trait uniting this group is a pair of venom claws or forcipules formed from a modified first appendage. This also means that centipedes are an exclusively predatory taxon, which is uncommon.[citation needed]

Centipedes normally have a drab coloration combining shades of brown and red. Template:Wict and subterranean species may lack pigmentation and many tropical Scolopendromorphs have bright aposematic colors. Size can range from a few millimeters in the smaller Lithobiomorphs and Geophilomorphs to about 30 cm in the largest Scolopendromorphs. Centipedes can be found in a wide variety of environments.

Worldwide there are estimated to be 8,000 species.[1] Currently there are about 3,000 described species. Geographically, centipedes have a wide range, which reaches beyond the Arctic Circle.[2] Centipedes are found in an array of terrestrial habitats from tropical rainforests to deserts. Within these habitats centipedes require a moist micro-habitat due to their rapid rates of water loss. Accordingly, they are found in soil and leaf litter, under stones and deadwood, and inside logs. In addition, centipedes are among the largest terrestrial invertebrate predators and often they contribute a significant proportion to invertebrate predatory biomass in terrestrial ecosystems.

Hazards to humans

Some species of centipedes can be hazardous to humans because of their bite. Although a bite to an adult human may only be painful, those with allergies that are similar to that of bee stings and small children are at greater risk. Smaller centipedes usually do not puncture human skin, while larger centipedes may cause anaphylactic shocks. Also, many species of centipedes are considered to be poisonous and therefore can kill humans with their bite.

Evolution

Centipedes have an ancestry dating back 420 million years to the late Silurian.[3] They belong to the subphylum Myriapoda which includes Diplopoda, Symphyla, and Pauropoda. The oldest known fossil land animal is a Myriapod.[clarification needed] Being one of the earliest terrestrial animals, centipedes were one of the first to fill a fundamental niche as ground level generalist predators in detrital food webs. Today centipedes are abundant and exist in many harsh habitats.

Within the myriapods, centipedes are believed to be the first of the extant classes to branch from a common ancestor. There are five orders of centipede: Craterostigmomorpha, Geophilomorpha, Lithobiomorpha, Scolopendromorpha, and Scutigeromorpha. These orders are united into the clade Chilopoda by the following synapomorphies.[4]

  1. first post-cephalic appendage modified to poison claws
  2. embryonic cuticle on second maxilliped has egg tooth
  3. the trochanter-prefemur joint is fixed
  4. a spiral ridge on the nucleus of spermatazoan

Chilopoda is then split into two clades: the Notostigmomorpha including the Scutigeromorpha and the Pluerostigmomorpha including the other four orders. The main difference is that the Notostigmomorpha have their spiracles located mid-dorsally. It was previously believed that Chilopoda was split into Anamorpha including the Lithobiomorpha and the Scutigeromorpha, and Epimorpha including the Geophilomorpha and Scolopendromorpha based on developmental modes, with the relationship of Craterostigmomorpha being uncertain. Recent phylogenetic analyses using combined molecular and morphological characters supports the previous phylogeny.[5] The Epimorpha group still exists as monophyletic within the Pleurostigmomorpha, but the Anamorpha group is paraphyletic.

Geophilomorph centipedes are used to argue for the developmental constraint of evolution,[clarification needed] because they have variable segment numbers within species, yet (as with all centipedes[6]) they always have an odd number of pairs of legs.[7][8]

Life cycle

Centipede sex does not involve copulation. Males deposit a spermatophore for the female to take up. In one clade, this spermatophore is deposited in a web, and the male undertakes a courtship dance to encourage the female to engulf his sperm. In other cases, the males just leave them for the females to find. In temperate areas egg laying occurs in spring and summer but in subtropical and tropical areas there appears to be little seasonality to centipede breeding. It is also notable that there are a few known species of parthenogenetic centipedes.[9]

Centipede protecting its eggmass

The Lithobiomorpha, and Scutigeromorpha lay their eggs singly in holes in the soil, the female fills the hole in on the egg and leaves it. Number of eggs laid ranges from about 10 to 50. Time of development of the embryo to hatching is highly variable and may take from one to a few months. Time of development to reproductive period is highly variable within and among species. For example, it can take 3 years for S. coleoptera to achieve adulthood, whereas under the right conditions Lithiobiomorph species may reach a reproductive period in 1 year. In addition, centipedes are relatively long-lived when compared to their insect cousins. For example: the European Lithobius forficatus can live for 5 or 6 years. The combination of a small number of eggs laid, long gestation period, and long time of development to reproduction has led authors to label Lithobiomorph centipedes as K-selected.[10]

Females of Geophilomorpha and Scolopendromorpha show far more parental care, the eggs 15 to 60 in number are laid in a nest in the soil or in rotten wood, the female stays with the eggs, guarding and licking them to protect them from fungi. The female in some species stays with the young after they have hatched, guarding them until they are ready to leave. If disturbed the females tend to either abandon the eggs or young or to eat them; abandoned eggs tend to fall prey to fungi rapidly. Some species of Scolopendromorpha are matriphagic, meaning that the offspring eat their mother.

Little is known of the life history of Craterostigmomorpha.

Anamorphy vs. epimorphy

Centipedes grow their legs at different points in their development. In the primitive condition, exhibited by the L, Scutigeromorpha and Craterostigmomorpha, development is anamorphic. That is to say, more pairs of legs are grown between moults; for example, Scutigera coleoptera, the American house centipede, hatches with only 4 pairs of legs and in successive moults has 5, 7, 9, 11, 15, 15, 15 and 15 before becoming a sexually mature adult. Life stages with fewer than 15 pairs of legs are called larval stadia (~5 stages). After the full complement of legs is achieved, the now post-larval stadia (~5 stages) develop gonopods, sensory pores, more antennal segments, and more ocelli. All mature apomorphic centipedes have 15 leg-bearing segments.[verification needed]

The Craterostigmomorpha only have one phase of anamorphis, with embryos having 12 pairs, and moultees 15.

The clade Epimorpha, consisting of orders Geophilomorpha and Scolopendromorpha, derived epimorphy. Here, all pairs of legs are developed in the embryonic stages, offspring do not develop more legs between moults. Interestingly, it is this clade that contains the longest centipedes; the maximum number of thoracic segments may also vary intra-specifically, often on a geographical basis; in most cases, females bear more legs than males. The number of leg-bearing pairs varies widely, from 15 to 191, but the developmental mode of their creation means that they are always added in pairs—hence the total number present is always odd.

Ecology

Centipedes are an exclusively predatory taxon. They are known as generalist predators which means that they have adapted to eat a variety of different available prey items. Centipedes are also known to be nocturnal. Studies on centipede activity rhythms confirm this, although there are a few observations of centipedes active during the day and one species Strigamia chinophila that is diurnal. What centipedes actually eat is not well known because of their cryptic lifestyle and thorough mastication of food. Laboratory feeding trials support that they will feed as generalists, taking most anything that is soft-bodied and in a reasonable size range. It has been suggested that earthworms provide the bulk of diets for Geophilomorphs, since geophilomorphs burrow through the soil and earthworm bodies would be easily pierced by their poison claws. Observations suggest that Geophilomorphs cannot subdue earthworms larger than themselves, and so smaller earthworms may be a substantial proportion of their diet.[11] Scolopendromorphs, given their size, are able to feed on vertebrates as well as invertebrates. They have been observed eating reptiles, amphibians, small mammals, bats and birds. Collembola may provide a large proportion of Lithiobiomorph diet. Little is known about Scutigeromorph or Craterostigmomorph diets. All centipedes are potential intraguild predators. Centipedes and spiders may frequently prey on one another.[12]Video

Centipedes are eaten by a great many vertebrates and invertebrates, and form the staple diet of some. The African ant Amblyopone pluto feeds solely on Geophilomorphs[verification needed] and the South African Cape Black-headed snake Aparallactus capensis mainly feeds on centipedes.

Centipedes are found in moist microhabitats. Water relations are an important aspect of their ecology, since they lose water rapidly in dry conditions. Water loss is a result of centipedes lacking a waxy covering of their exoskeleton and excreting waste nitrogen as ammonia, which requires extra water. Centipedes deal with water loss through a variety of adaptations. Geophilomorphs lose water less rapidly than Lithobiomorps even though they have a greater surface area to volume ratio. This may be explained by the fact that Geophilomorphs have a more heavily sclerotized pleural membrane. Spiracle shape, size and ability to constrict also have an influence on rate of water loss. In addition, it has been suggested that number and size of coxal pores may be variables affecting centipede water balance.

Centipedes live in many different habitat types; forest, savannah, prairie, and desert to name a few. Some Geophilomorphs are adapted to littoral habitats, where they feed on barnacles.[13] Species of all orders excluding Craterostigmomorpha have adapted to caves. Centipede densities have been recorded as high as 600/m2 and biomass as high as 500 mg/m2 wet weight. Small Geophilomorphs attain highest densities, followed by small Lithobiomorphs. Large Lithobiomorphs attain densities of 20/m2. One study of Scolopendromorphs records Scolopendra morsitans in a Nigerian savannah at a density of 0.16/m2 and a biomass of 140 mg/m2 wet weight.[14]

Largest centipede

Man holding Scolopendra gigantea. Trinidad, 1961.

Scolopendra gigantea, also known as the Amazonian giant centipede, is the largest existing species of centipede in the world, reaching over 30 cm (12 in) in length. It is known to eat bats, catching them in midflight[15], as well as rodents and spiders. The now extinct Euphoberia, was the largest centipede, growing up to 1 m (39 in) in length. There are rumors stating that the Galápagos Islands giant centipede can reach sizes of up to 60 cm (24 in), although these rumours may result from the rarity of the particular centipede. Captive Galapagos centipedes don't often exceed 20 cm (7.9 in) in body length.

Orders and families

The orders of centipedes are listed below, from primitive to derived.

Scutigeromorpha

Scutigeromorpha
Scientific classification
Kingdom:
Phylum:
Subphylum:
Class:
Subclass:
Order:
Scutigeromorpha
Families

The Scutigeromorpha are anamorphic, reaching 15 leg-bearing segments in length. They are very fast creatures, and able to withstand falling at great speed: they reach up to 15 body-lengths per second when dropped, surviving the fall. They are the only centipede group to retain their original compound eyes, with which a crystalline layer analogous to that seen in chelicerates and insects can be observed. They also bear long and multisegmented antennae. Adaption to a burrowing lifestyle has led to the degeneration of compound eyes in other orders. This feature is of great use in phylogenetic analysis. The group is the sole Template:Wict representative of the Notostigmomorpha, defined by having single spiracle openings on the back of their ventral plates. The more derived groups bear a plurality of spiracular openings on their sides, and are termed the Pleurostigmomorpha. Some even have 7 unpaired spiracles that can be found along the middorsal line and closer to their posterior section of tergites.

Lithobiomorpha

Lithobiomorpha
Scientific classification
Kingdom:
Phylum:
Subphylum:
Class:
Subclass:
Order:
Lithobiomorpha
Families

The lithobiomorpha represent the other main group of anamorphic centipedes; they also reach a mature length of 15 thoracic segments. This group has lost the compound eyes, and sometimes has no eyes altogether. Instead, its eyes have facets or groups of facets. Its spiracles are paired and can be found laterally. Every leg-bearing segment of this organism has a separate tergite. It also has relatively short antennae and legs.

Craterostigmomorpha

Craterostigmomorpha
Scientific classification
Kingdom:
Phylum:
Subphylum:
Class:
Subclass:
Order:
Craterostigmomorpha
Families

Family Craterostigmidae

The craterostigmomorpha are the least diverse centipede clade, comprising only two species.[16] Their geographic range is restricted to Tasmania and New Zealand. They have a distinct body plan; their anamorphosis comprises a single stage; they grow from 12 to 15 segments in their first moult. Their low diversity and intermediate position between the primitive Anamorphic centipedes and the derived Epimorpha has led to them being described as the "platypus of the centipede world".[17] They represent a "highly pruned" version of a once diverse clade. Maternal brooding unites Craterostigomomorpha with the Epimorphs into the clade Phylactometria. This trait is thought to be closely linked with the presence of sternal pores, which secrete sticky or noxious secretions, which mainly serve to repel predators and parasites. The presence of these pores on the Devonian Devonobius permits its inclusion in this clade, allowing its divergence to be dated to 375 (or more) million years ago[18]

Scolopendromorpha

Scolopendromorpha
Scientific classification
Kingdom:
Phylum:
Subphylum:
Class:
Subclass:
Order:
Scolopendromorpha
Families

The more primitive of the Epimorpha, the Scolopendromorpha comprise 21 or more segments with the same number of paired legs. Their antennae have 17 or more segments. Their eyes will have at least 4 facets on each side.

Geophilomorpha

Geophilomorpha
Scientific classification
Kingdom:
Phylum:
Subphylum:
Class:
Subclass:
Order:
Geophilomorpha

Foddai & Minelli 2000[19]
Suborders and Families

Suborder Placodesmata

Suborder Adesmata

The Geophilomorpha are the most derived group of centipedes, and bear upwards of 27 leg-bearing segments. They are without fail eyeless and blind, and bear spiracles on all leg-bearing segments—in contrast to other groups, who only bear them on their 3rd, 5th, 8th, 10th and 12th segments—a "mid-body break", accompanied by a change in tagmatic shape, occurring roughly at the interchange from odd to even segments. This group, at 1260 spp. the most diverse, also contains the largest and leggiest specimens at 29 or more pairs of legs. They also have 14 segmented antennae.

List of common species

Scientific name Common name
Alipes sp. Feather tail centipede
Ethmostigmus trigonopodus Blue ring centipede
Lithobius forficatus Stone centipede
Pachymerium ferrugineum Earth centipede
Scolopendra galapagoensis Galápagos centipede
Scolopendra gigantea Peruvian giant orange leg centipede
Scolopendra heros Giant Sonoran centipede
Scolopendra morsitans Red-headed centipede
Scolopendra polymorpha Arizona tiger centipede
Scolopendra subspinipes Vietnamese centipede
Scutigera coleoptrata House centipede

References

  1. ^ Adis, J. and M.J. Harvey. 2000. How many Arachnida and Myriapoda are there worldwide and in Amazonia? Studies on Neotropical Fauna and Environment, 35: 139-141.
  2. ^ Lewis, J.G.E. 1981. The biology of centipedes. Cambridge University Press, Cambridge.
  3. ^ Shear, W.A. 1992. Early Life on Land. American Scientist, 80: 444-456.
  4. ^ Edgecombe, G. D. and Giribet, G. 2002. Myriapod phylogeny and the relationships of Chilopoda. 143-168. In: Llorente Bousquets, J. and Morrone, J. J. (eds) Biodiversidad, Taxonomía y Biogeografia de Artrópodos de México: Hacia una Síntesis de su Conocimiento, Volumen III. Prensas de Ciencias, Universidad Nacional Autónoma de México, México.
  5. ^ Edgecombe, G. D. and Giribet, G. 2002. Myriapod phylogeny and the relationships of Chilopoda. 143-168. In: Llorente Bousquets, J. and Morrone, J. J. (eds) Biodiversidad, Taxonomía y Biogeografia de Artrópodos de México: Hacia una Síntesis de su Conocimiento, Volumen III. Prensas de Ciencias, Universidad Nacional Autónoma de México, México.
  6. ^ Discounting individual mutants
  7. ^ Arthur, W. 2002. The interaction between developmental bias and natural selection from centipede segmentation to a general hypothesis. Heredity, 89: 239-246.
  8. ^ Arthur, W., and A.D. Chapman. 2005. The centipede Strigamia maritima: what it can tell us about development and evolution of segmentation. Bioessays, 27(6): 653-660.
  9. ^ Lewis, J.G.E. 1981. The biology of centipedes. Cambridge University Press, Cambridge.
  10. ^ Albert, A.M. 1979. Chilopoda as part of the predatory macroarthropod fauna in forests: abundance, life-cycle, biomass, and metabolism. Ch 22. in Myriapod biology. Academic Press, London.
  11. ^ Weil, E. 1958. Biologie der einheimischen Geophiliden. Z. angew. Ent., 42: 173-209.
  12. ^ Lewis, J.G.E. 1981. The biology of centipedes. Cambridge University Press, Cambridge.
  13. ^ Lewis, J.G.E. 1961. The life history and ecology of the littoral centipede Strigamia maritima (Leach). Proc. Zool. Soc. Lond. 137: 221-248.
  14. ^ Lewis, J.G.E. 1972. The population density and biomass of the centipede S. amazonica (Bucherl) (Scolopendromorpha: Scolopendridae) in Sahel savannah in Nigeria. Ent. Mon. Mag., 108: 16-18.
  15. ^ Molinari, J., Gutierrez, E.E., De Ascencae, A.A., Nasar, J.M., Arends, A., and R.J. Marquez. 2005. Predation by Giant Centipedes, S. gigantea, on 3 species of bats in a Venezuelan cave. Caribbean Journal of Science, 4(2): 340-346
  16. ^ Edgecome, in press, describes the second species
  17. ^ Greg Edgecombe
  18. ^ . Giribet, G. (2006). "Conflict between datasets and phylogeny of centipedes: an analysis based on seven genes and morphology" (PDF). Proceedings: Biological Sciences. 273 (1586): 531–538. doi:10.1098/rspb.2005.3365. Retrieved 2008-01-16. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  19. ^ Foddai, D., & A. Minelli. 2000. Phylogeny of geophilomorph centipedes: old wisdom and new insight from morphology. Fragmenta Faunistica, 43 Supplement:61-71.