Jump to content

Xerox Alto

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 66.92.48.217 (talk) at 17:57, 22 October 2012 (TI). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Xerox Alto
The Xerox Alto monitor has a portrait orientation.
ManufacturerXerox PARC
Release date1973; 51 years ago (1973)
Units sold2000
Media2.5 MB single-platter cartridge
CPUBit-slice processor based on TI 74181
Memory128-512 kB
InputKeyboard, 3-button mouse, 5-key chord keyset
RelatedXerox Star; Apple Lisa, Macintosh

The Xerox Alto was one of the first computers designed for individual use (though not as a home computer), making it arguably what is now called a personal computer. It was developed at Xerox PARC in 1973. It was the first computer to use the desktop metaphor and mouse-driven graphical user interface (GUI).

It was not a commercial product, but several thousand units were built and were heavily used at PARC, other Xerox facilities, and at several universities for many years. The Alto greatly influenced the design of personal computers in the following decades, notably the Apple Macintosh and the first Sun workstations. It is now rare and a valued collector's item.[1]

History

The Alto was conceived in 1972 in a memo written by Butler Lampson, inspired by the On-Line System (NLS) developed by Douglas Engelbart at SRI, and was designed primarily by Chuck Thacker. Industrial Design and manufacturing was sub-contracted to Clement Designlabs, whose team included Carl J. Clement, Ken Campbell (mechanical engineer), Terry West (industrial designer), and Fred Stengel.[2] An initial run of 80 units was produced by Clement Designlabs, working with Doug Fairbairn at Xerox PARC, Tony Ciuffini and Rick Nevinger at Xerox El Segundo, who were responsible for installing the Alto’s electronics. Due to the success of the pilot run, the team went on to produce approximately 2000 units over the next ten years.[2]

Several Xerox Alto chassis are now on display at the Computer History Museum in Mountain View, California, and a running system is on display at the Living Computer Museum in Seattle, Washington. For his pioneering design and realization of the Alto, Charles P. Thacker was awarded the 2009 Turing Award of the Association for Computing Machinery on March 9, 2010.[3] The 2004 Charles Stark Draper Prize was awarded to Thacker, Alan C. Kay, Butler Lampson, and Robert W. Taylor for their work on Alto.[4]

Architecture

The following description is based primarily on the August 1976 Alto Hardware Manual by Xerox PARC.

Alto was a microcoded design but, unlike many computers, the microcode engine was not hidden from the programmer in a layered design. Applications such as Pinball took advantage of this to accelerate performance. The Alto had a bit-slice arithmetic logic unit (ALU) based on the Texas Instruments' 74181 chip, a ROM control store with a writable control store extension and had 128 (expandable to 512) kB of main memory organized in 16-bit words. Mass storage was provided by a hard disk that used a removable 2.5 MB single-platter cartridge (Diablo Systems, a company Xerox later bought) similar to those used by the IBM 2310. The base machine and one disk were housed in a cabinet about the size of a small refrigerator; one additional disk could be added in daisy-chain fashion.

Alto both blurred and ignored the lines between functional elements. Rather than a distinct central processing unit with a well-defined electrical interface (e.g., system bus) to storage and peripherals, the Alto ALU interacted directly with hardware interfaces to memory and peripherals, driven by microinstructions output from the control store. The microcode machine supported up to 16 cooperative tasks, each with fixed priority. The emulator task executed the normal instruction set to which most applications were written (which was rather like that of a Data General Nova). Others tasks served the display, memory refresh, disk, network, and other I/O functions. As an example, the bitmap display controller was little more than a 16-bit shift register; microcode moved display refresh data from main memory to the shift register, which serialized it into a display of pixels corresponding to the ones and zeros of the memory data. Ethernet was likewise supported by minimal hardware, with a shift register that acted bidirectionally to serialize output words and deserialize input words. Its speed was limited to 3 Mbit/s because the microcode engine could not go faster and continue to support the video display, disk activity and memory refresh.

Unlike most minicomputers of the era, Alto did not support a serial terminal for user interface. Apart from an Ethernet connection, the Alto's only common output device was a bi-level (black and white) cathode ray tube (CRT) display with a tilt-and-swivel base, mounted in "portrait" orientation rather than the more common "landscape" orientation. Its input devices were a custom detachable keyboard, a three-button mouse, and an optional 5-key chord keyset. The last two items had been introduced by SRI's On-Line System; while the mouse was an instant success among Alto users, the chord keyset never became popular.

In the early mice, the buttons were three narrow bars, arranged top to bottom rather than side to side; they were named after their colors in the documentation. The motion was sensed by two wheels perpendicular to each other. These were soon replaced with ball-type mice, which were invented by Bill English. These were photo-mechanical mice — first using white light and then using IR to count the rotations of wheels inside the mouse.

The keyboard was interesting in that each key was represented as a separate bit in a set of memory locations. As a result, it was possible to read multiple key presses simultaneously. This characteristic was used to alter where the Alto would boot from. The keyboard value was used as the sector address on the disk to boot from, and by holding specific keys down while pressing the boot button, different microcode and operating systems could be loaded. This gave rise to the expression "nose boot" where the keys needed to boot for a test OS release required more fingers than you could come up with. Nose boots were made obsolete by the "move2keys" program that shifted files on the disk so that a specified key sequence could be used.

Several other I/O devices were developed for the Alto, including a TV camera, the Hy-Type daisywheel printer and a parallel port, although these were quite rare. The Alto could also control external disk drives to act as a file server. This was a common application for the machine.

Software

The file manager program running on the Alto.

Early software for the Alto was written in the programming language BCPL, and later in Mesa, which was not widely used outside PARC but influenced several later languages, such as Modula. The Alto keyboard lacked the underscore key, which had been appropriated for the left-arrow character used in Mesa for the assignment operator. This feature of the Alto keyboard may have been the source for the CamelCase style for compound identifiers. Another feature of the Alto was that it was microcode-programmable by users.

The Alto helped popularize the use of raster graphics model for all output, including text and graphics. It also introduced the concept of the bit block transfer operation, or BitBLT, as the fundamental programming interface to the display. Despite its small memory size, many innovative programs were written for the Alto, including:

There was no spreadsheet or database software.

Diffusion and evolution

Technically, the Alto was a small minicomputer, but it could be considered a personal computer in the sense that it was used by a single person sitting at a desk, in contrast with the mainframes and other minicomputers of the era. It was arguably "the first personal computer", although this title is disputed by others.[5]

The Alto was never a commercial product, although over two thousand were built. Universities, including MIT, Stanford, CMU, and the University of Rochester received donations of Altos including IFS file servers and Dover laser printers. These machines were the inspiration for the ETH Zürich Lilith and Three Rivers Company PERQ workstations, and the Stanford University Network (SUN) workstation, which was eventually marketed by a spin-off company, Sun Microsystems. The Apollo/Domain workstation was heavily influenced by the Alto.

The White House information systems department acquired an Alto, and sought to lead Federal computer suppliers in its direction. The Executive Office of the President of the United States (EOP) issued a request for proposal for a computer system to replace the aging Office of Management and Budget (OMB) budget system, using Alto-like workstations, connected to an IBM-compatible mainframe. The request was eventually withdrawn because no mainframe producer could supply such a configuration.

In December 1979, Apple Computer's co-founder Steve Jobs visited Xerox PARC, where he was shown the Smalltalk-80 programming environment, networking, and most importantly the WYSIWYG, mouse-driven graphical user interface provided by the Alto. He reportedly was not impressed by the first two, but was excited by the last one, and promptly integrated it, first into the Lisa and then in the Macintosh, attracting several key researchers to work in his company.[6]

In 1980–1981, Xerox Altos were used by engineers at PARC and at the Xerox System Development Department to design the Xerox Star workstations.

Xerox and the Alto

Xerox Alto with harddrive (below)

Xerox itself was slow to realize the value of the technology that had been developed at PARC.[7] After their unhappy experience with Scientific Data Systems (SDS, later XDS) in the late 1960s, the firm was reluctant to get into the computer business again with commercially untested designs.

Before the advent of personal computers such as the Apple II in 1977 and the IBM Personal Computer (IBM PC) in 1981, the computer market was dominated by costly mainframes and minicomputers equipped with dumb terminals that time-shared processing time of the central computer. So through the 1970s Xerox showed no interest in the work done at PARC. When Xerox finally entered the PC market with the Xerox 820, they pointedly rejected the Alto design and opted instead for a very conventional model, a CP/M-based machine with the then-standard 80 by 24 character-only monitor and no mouse.

With the help of PARC researchers, Xerox eventually developed the Xerox Star (and later the cost reduced Star; the 6085) office system, which included the Dandelion and Daybreak workstations. These machines, based on the 'Wildflower' architecture described in a paper by Butler Lampson, incorporated most of the Alto innovations, including the graphical user interface with icons, windows, folders, Ethernet-based local networking, and network-based laser printer services.

Xerox only realized their mistake in the early 1980s, after Apple's Macintosh revolutionized the PC market via its bitmap display and the mouse-centered interface—both copied from the Alto.[7] While the Xerox Star series was a relative commercial success, it came too late. The expensive Xerox workstations could not compete against the cheaper GUI-based workstations that appeared in the wake of the first Macintosh, and Xerox eventually quit the workstation market for good.

See also

References

  1. ^ http://vintagecomputersale.com/xerox-alto-vintage-computer-ultra-rare-system-complete
  2. ^ a b “The History of the Xerox Alto”. Carl J. Clement. March, 2002.
  3. ^ Virginia Gold. "ACM Turing Award Goes to Creator of First Modern Personal Computer". Association for Computing Machinery. Retrieved 11 January 2011.
  4. ^ "2004 Recipients of the Charles Stark Draper Prize"
  5. ^ "Personal Computer Milestones". Blinkenlights Archaeological Institute. Retrieved 2006-12-31.
  6. ^ "PBS Triumph of the Nerds Television Program Transcripts: Part III". PBS (Public Broadcasting System). Retrieved 2007-02-08.
  7. ^ a b Douglas K. Smith (1988). Fumbling the Future: How Xerox Invented, Then Ignored, the First Personal Computer. New York: William Morrow. {{cite book}}: Unknown parameter |coauthor= ignored (|author= suggested) (help)
  • Alto User's Handbook, Xerox PARC, September 1979

Further reading

  • Hiltzik, Michael A. (1999). Dealers of Lightning: Xerox PARC and the Dawn of the Computer Age. New York: HarperCollins. ISBN 0-88730-891-0. {{cite book}}: Cite has empty unknown parameter: |coauthors= (help)