Jump to content

Gadolinium(III) oxide

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 128.243.253.113 (talk) at 10:19, 13 November 2013. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Gadolinium(III) oxide
Gadolinium(III) oxide
Names
Other names
gadolinium sesquioxide, gadolinium trioxide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.861 Edit this at Wikidata
RTECS number
  • LW4790000
UNII
  • InChI=1S/2Gd.3O/q2*+3;3*-2 checkY
    Key: CMIHHWBVHJVIGI-UHFFFAOYSA-N checkY
  • InChI=1/2Gd.3O/q2*+3;3*-2
    Key: CMIHHWBVHJVIGI-UHFFFAOYAI
  • [Gd+3].[Gd+3].[O-2].[O-2].[O-2]
Properties
Gd2O3
Molar mass 362.50 g/mol
Appearance white odorless powder
Density 7.407 g/cm3 (15 °C)
7.07 g/cm3 (25 °C) [1]
Melting point 2420 °C
insoluble
1.8×10−23
Solubility soluble in acid
Structure
Monoclinic, cubic
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Gadolinium(III) oxide (archaically gadolinia) is an inorganic compound with the formula Gd2O3. It is one of the most commonly available forms of the rare earth element gadolinium, derivatives of which are potential contrast agents for magnetic resonance imaging.

Structure

Cubic Gd2O3
Monoclinic Gd2O3

Gadolinium oxide has two most common structures: monoclinic (Pearson symbol mS30, space group C2/m, No. 12) and cubic (cI80, Ia3, No. 206). The cubic structure is similar to that of manganese(III) oxide, which, as a mineral, is also called bixbyite (then with a minor iron(III) content). There are two types of gadolinium sites in the cubic structure, both with a coordination number of 6 but with different geometry of the surrounding oxygen atoms.[2] At room temperature, the cubic structure is the most stable and a phase change to the monoclinic structure takes place at 1200 °C. From 2100 °C and up to the melting point at 2420 °C, a hexagonal phase dominates.


Preparation and chemistry

Gadolinium oxide can be formed by thermal decomposition of the hydroxide, nitrate, carbonate, or oxalates.[3] Gadolinium oxide forms on the surface of gadolinium metal.

Gadolinium oxide is a rather basic oxide, indicated by its ready reaction with carbon dioxide to give carbonates. It dissolves readily in the common mineral acids with the complication that the oxalate, fluoride, sulfate and phosphate are very insoluble in water and may coat the grains of oxide, thereby preventing the complete dissolution.[4]

Nanoparticles of Gd2O3

Several methods are known for the synthesis of gadolinium oxide nanoparticles, mostly based on precipitation of the hydroxide by the reaction of gadolinium ions with hydroxide, followed by thermal dehydration to the oxide. The nanoparticles are always coated with a protective material to avoid the formation of larger polycrystalline aggregates.[5][6][7]

Nanoparticles of gadolinium oxide is a potential contrast agent for magnetic resonance imaging (MRI). A dextran-coated preparation of 20–40 nm sized gadolinium oxide particles had a relaxivity of 4.8 s−1mM−1 per gadolinium ion at 7.05 T (an unusually high field compared to the clinically used MRI scanners which mostly range from 0.5 to 3 T).[5] Smaller particles, between 2 and 7 nm, were tested as a MRI agent in.[6][7]

References

  1. ^ Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN 0-07-049439-8
  2. ^ Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN 0-19-855370-6.
  3. ^ Cotton, S. (2006) Lanthanide and Actinide Chemistry Wiley ISBN 0-470-01006-1 p.6
  4. ^ Yost, D. M, Russell, H. Jr., Garner, C. S. The Rare-Earth Elements and their Compounds, Wiley, 1947.
  5. ^ a b McDonald, M; Watkin, K (2006). "Investigations into the Physicochemical Properties of Dextran Small Particulate Gadolinium Oxide Nanoparticles". Academic Radiology. 13 (4): 421. doi:10.1016/j.acra.2005.11.005. PMID 16554221.
  6. ^ a b Bridot, Jean-Luc; Faure, Anne-Charlotte; Laurent, Sophie; Rivière, Charlotte; Billotey, Claire; Hiba, Bassem; Janier, Marc; Josserand, VéRonique; Coll, Jean-Luc (2007). "Hybrid Gadolinium Oxide Nanoparticles: Multimodal Contrast Agents for in Vivo Imaging". Journal of the American Chemical Society. 129 (16): 5076. doi:10.1021/ja068356j. PMID 17397154.
  7. ^ a b Engström, Maria; Klasson, Anna; Pedersen, Henrik; Vahlberg, Cecilia; Käll, Per-Olov; Uvdal, Kajsa (2006). "High proton relaxivity for gadolinium oxide nanoparticles". Magnetic Resonance Materials in Physics, Biology and Medicine. 19 (4): 180. doi:10.1007/s10334-006-0039-x. PMID 16909260.