1,6-Hexanediol

From Wikipedia, the free encyclopedia
  (Redirected from 1,6-hexanediol)
Jump to navigation Jump to search
1,6-Hexanediol
1,6-Hexanediol.svg
Names
IUPAC name
Hexane-1,6-diol
Other names
Hexamethylene glycol; 1,6-Dihydroxyhexane; 1,6-Hexylene glycol; Hexamethylenediol; HDO
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.010.068
EC Number
  • 211-074-0
RTECS number
  • MO2100000
UNII
Properties
C6H14O2
Molar mass 118.176 g·mol−1
Density 0.967
Melting point 42 °C (108 °F; 315 K)
Boiling point 250 °C (482 °F; 523 K)
500g/L [1]
Solubility soluble in ethanol and acetone, slightly soluble in diethyl ether, insoluble in benzene.[2]
Hazards
Flash point 102 °C (216 °F; 375 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

1,6-Hexanediol is an organic compound with the formula (CH2CH2CH2OH)2. It is a colorless water-soluble solid.[3]

Production[edit]

1,6-Hexanediol is prepared industrially by the hydrogenation of adipic acid or its esters. Laboratory synthesis can be done by reduction of adipic acid with lithium aluminium hydride; however, since it is inexpensive and commercially available, it is usually not synthesized in the laboratory.

Properties[edit]

As 1,6-hexanediol contains the hydroxyl group, it undergoes the typical chemical reactions of alcohols such as dehydration, substitution, esterification.

Dehydration of 1,6-hexanediol gives oxepane, 2-methyltetrahydropyran and 2-ethyltetrahydrofuran. Corresponding thiophene and pyrrolidone can be made by reacting 1,6-hexanediol with hydrogen sulfide and ammonia respectively.[4]

Polycarbonates can be made from reaction with 1,6-hexanediol with phosgene.

Uses[edit]

1,6-Hexanediol is widely used for industrial polyester and polyurethane production..[3]

1,6-Hexanediol can improve the hardness and flexibility of polyesters as it contains a fairly long hydrocarbon chain. In polyurethanes, it is used as a chain extender, and the resulting modified polyurethane has high resistance to hydrolysis as well as mechanical strength, but with a low glass transition temperature.

It is also an intermediate to acrylics, adhesives, and dyestuffs. Unsaturated polyester resins have also been made from 1,6-hexanediol, along with styrene, maleic anhydride and fumaric acid.[4]

Safety[edit]

1,6-Hexanediol has low toxicity and low flammability, and is generally considered as safe. It is not irritating to skin, but may irritate the respiratory tract or mucous membranes. Dust or vapor of the compound can irritate or damage the eyes.[1]

References[edit]

  1. ^ a b Chemicals and reagents 2008-2010, Merck
  2. ^ CRC Handbook of Chemistry and Physics, 87th Edition
  3. ^ a b Peter Werle; Marcus Morawietz; Stefan Lundmark; Kent Sörensen; Esko Karvinen; Juha Lehtonen (2008). "Alcohols, Polyhydric". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a01_305.pub2.
  4. ^ a b BASF intermediates, BASF