16 Cygni Bb

Coordinates: Sky map 19h 41m 51.9720s, +50° 31′ 03.083″
This is a good article. Click here for more information.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Primefac (talk | contribs) at 02:46, 3 October 2016 (→‎External links: rmv template being deleted (TFD) using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Template:Planetbox begin Template:Planetbox image Template:Planetbox star Template:Planetbox orbit Template:Planetbox character Template:Planetbox discovery Template:Planetbox reference Template:Planetbox end

16 Cygni Bb or HD 186427 b is an extrasolar planet approximately 69 light-years away in the constellation of Cygnus.[1] The planet was discovered orbiting the Sun-like star 16 Cygni B, one of two solar-mass (M) components of the triple star system 16 Cygni. It makes one revolution every 799 days and was the first eccentric Jupiter and planet in a triple star system to be discovered.

Discovery

In October 1996 the discovery of a planetary-mass companion to the star 16 Cygni B was announced, with a mass at least 1.68 times that of Jupiter (MJ). At the time, it had the highest orbital eccentricity of any known extrasolar planet. The discovery was made by measuring the star's radial velocity.

As the inclination of the orbit cannot be directly measured and as no dynamic model of the system was then published, only a lower limit on the mass could then be determined.[2][3]

Orbit and mass

Unlike the planets in the Solar System, the planet's orbit is highly elliptical, and its distance varies from 0.54 AU at periastron to 2.8 AU at apastron.[4] This high eccentricity may have been caused by tidal interactions in the binary star system, and the planet's orbit may vary chaotically between low and high-eccentricity states over a period of tens of millions of years.[5]

Preliminary astrometric measurements in 2001 suggested the orbit of 16 Cygni Bb may be highly inclined with respect to our line of sight (at around 173°).[6] This would mean the object's mass may be around 14 MJ; the dividing line between planets and brown dwarfs is at 13 MJ. However these measurements were later proved useful only for upper limits.[7]

A mathematical study in 2012 showed that a mass of about 2.4 MJ would be most stable in this system.[2] This would make the body a true planet. With these tidal effects at that age, a gas giant would be most stable.

Physical characteristics

Because the planet has only been detected indirectly by measurements of its parent star, properties such as its radius, composition and temperature are unknown.

Habitable zone

The planet's highly eccentric orbit means the planet would experience extreme seasonal effects. Despite this, simulations suggest that an Earth-like moon would be able to support liquid water at its surface over the course of a year.[8] Due to the eccentric orbit of this massive gas giant, it is unlikely that a habitable planet could survive in this system.[9]

See also

References

  1. ^ The Discovery of a Planetary Companion to 16 Cygni B, W. D. Cochran, A. P. Hatzes (Univ. Texas), R. P. Butler, G. W. Marcy (SFSU and U. C. Berkeley), (Submitted on 27 Nov 1996)
  2. ^ a b Cite error: The named reference truemass was invoked but never defined (see the help page).
  3. ^ Butler, R. P.; Marcy, G. W. "The Lick Observatory Planet Search": 331. Bibcode:1997abos.conf..331B. {{cite journal}}: Cite journal requires |journal= (help); Unknown parameter |conference= ignored (help)
  4. ^ Butler, R. P.; et al. (2006). "Catalog of Nearby Exoplanets". The Astrophysical Journal. 646 (1): 505–522. arXiv:astro-ph/0607493. Bibcode:2006ApJ...646..505B. doi:10.1086/504701.
  5. ^ Holman, M.; Touma, J.; Tremaine, S. (1997). "Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B". Nature. 386 (6622): 254–256. Bibcode:1997Natur.386..254H. doi:10.1038/386254a0.
  6. ^ Han, I.; Black, D. C.; Gatewood, G. (2001). "Preliminary Astrometric Masses for Proposed Extrasolar Planetary Companions". The Astrophysical Journal Letters. 548 (1): L57–L60. Bibcode:2001ApJ...548L..57H. doi:10.1086/318927.
  7. ^ Pourbaix, D.; Arenou, F. (2001). "Screening the Hipparcos-based astrometric orbits of sub-stellar objects". Astronomy and Astrophysics. 372 (3): 935–944. arXiv:astro-ph/0104412. Bibcode:2001A&A...372..935P. doi:10.1051/0004-6361:20010597.
  8. ^ Williams, D. M.; Pollard, D. (2002). "Earth-like worlds on eccentric orbits: excursions beyond the habitable zone". International Journal of Astrobiology. 1 (1): 61–69. Bibcode:2002IJAsB...1...61W. doi:10.1017/S1473550402001064.
  9. ^ Wittenmyer, R. A.; Endl, M.; Cochran, W. D.; Levison, H. F. (2007). "Dynamical and Observational Constraints on Additional Planets in Highly Eccentric Planetary Systems". The Astronomical Journal. 134 (3): 1276–1284. arXiv:0706.1962. Bibcode:2007AJ....134.1276W. doi:10.1086/520880.
Cite error: A list-defined reference named "van Leeuwen2007" is not used in the content (see the help page).

External links