# 3-j symbol

(Redirected from 3-jm symbol)

In quantum mechanics, the Wigner 3-j symbols, also called 3j or 3-jm symbols, are an alternative to Clebsch–Gordan coefficients for the purpose of adding angular momenta. While the two approaches address exactly the same physical problem, the 3-j symbols do so more symmetrically, and thus have greater and simpler symmetry properties than the Clebsch-Gordan coefficients.

## Mathematical relation to Clebsch-Gordan coefficients

The 3-j symbols are given in terms of the Clebsch-Gordon coefficients by

${\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}\equiv {\frac {(-1)^{j_{1}-j_{2}-m_{3}}}{\sqrt {2j_{3}+1}}}\langle j_{1}\,m_{1}\,j_{2}\,m_{2}|j_{3}\,(-m_{3})\rangle .}$

The j 's and m 's are angular momentum quantum numbers, i.e., every j (and every corresponding m) is either a nonnegative integer or half-odd-integer. The exponent of the sign factor is always an integer, so it remains the same when transposed to the left hand side, and the inverse relation follows upon making the substitution m3 → −m3:

${\displaystyle \langle j_{1}\,m_{1}\,j_{2}\,m_{2}|j_{3}\,m_{3}\rangle =(-1)^{j_{1}-j_{2}+m_{3}}{\sqrt {2j_{3}+1}}{\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&-m_{3}\end{pmatrix}}}$.

## Definitional relation to Clebsch-Gordan coefficients

The C-G coefficients are defined so as to express the addition of two angular momenta in terms of a third:

${\displaystyle |j_{3}\,m_{3}\rangle =\sum _{m_{1}=-j_{1}}^{j_{1}}\sum _{m_{2}=-j_{2}}^{j_{2}}\langle j_{1}\,m_{1}\,j_{2}\,m_{2}|j_{3}\,m_{3}\rangle |j_{1}\,m_{1}\,j_{2}\,m_{2}\rangle .}$

The 3-j symbols, on the other hand, are the coefficients with which three angular momenta must be added so that the resultant is zero:

${\displaystyle \sum _{m_{1}=-j_{1}}^{j_{1}}\sum _{m_{2}=-j_{2}}^{j_{2}}\sum _{m_{3}=-j_{3}}^{j_{3}}|j_{1}m_{1}\rangle |j_{2}m_{2}\rangle |j_{3}m_{3}\rangle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}=|0\,0\rangle .}$

Here, ${\displaystyle |0\,0\rangle }$ is the zero angular momentum state (${\displaystyle j=m=0}$). It is apparent that the 3-j symbol treats all three angular momenta involved in the addition problem on an equal footing, and is therefore more symmetrical than the C-G coefficient.

Since the state ${\displaystyle |0\,0\rangle }$ is unchanged by rotation, one also says that the contraction of the product of three rotational states with a 3-j symbol is invariant under rotations.

## Selection rules

The Wigner 3-j symbol is zero unless all these conditions are satisfied:

{\displaystyle {\begin{aligned}&m_{i}\in \{-j_{i},-j_{i}+1,-j_{i}+2,\ldots ,j_{i}\},\quad (i=1,2,3).\\&m_{1}+m_{2}+m_{3}=0\\&|j_{1}-j_{2}|\leq j_{3}\leq j_{1}+j_{2}\\&(j_{1}+j_{2}+j_{3}){\text{ is an integer (and, moreover, an even integer if }}m_{1}=m_{2}=m_{3}=0{\text{)}}\\\end{aligned}}}

## Symmetry properties

A 3-j symbol is invariant under an even permutation of its columns:

${\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}={\begin{pmatrix}j_{2}&j_{3}&j_{1}\\m_{2}&m_{3}&m_{1}\end{pmatrix}}={\begin{pmatrix}j_{3}&j_{1}&j_{2}\\m_{3}&m_{1}&m_{2}\end{pmatrix}}.}$

An odd permutation of the columns gives a phase factor:

${\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{2}&j_{1}&j_{3}\\m_{2}&m_{1}&m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{1}&j_{3}&j_{2}\\m_{1}&m_{3}&m_{2}\end{pmatrix}}.}$

Changing the sign of the ${\displaystyle m}$ quantum numbers (time-reversal) also gives a phase:

${\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\-m_{1}&-m_{2}&-m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}.}$

The 3-j symbols also have so-called Regge symmetries, which are not due to permutations or time-reversal.[1] These symmetries are,

${\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}={\begin{pmatrix}j_{1}&{\frac {j_{2}+j_{3}-m_{1}}{2}}&{\frac {j_{2}+j_{3}+m_{1}}{2}}\\j_{3}-j_{2}&{\frac {j_{2}-j_{3}-m_{1}}{2}}-m_{3}&{\frac {j_{2}-j_{3}+m_{1}}{2}}+m_{3}\end{pmatrix}}.}$
${\displaystyle {\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}=(-1)^{j_{1}+j_{2}+j_{3}}{\begin{pmatrix}{\frac {j_{2}+j_{3}+m_{1}}{2}}&{\frac {j_{1}+j_{3}+m_{2}}{2}}&{\frac {j_{1}+j_{2}+m_{3}}{2}}\\j_{1}-{\frac {j_{2}+j_{3}-m_{1}}{2}}&j_{2}-{\frac {j_{1}+j_{3}-m_{2}}{2}}&j_{3}-{\frac {j_{1}+j_{2}-m_{3}}{2}}\end{pmatrix}}.}$

With the Regge symmetries, the 3-j symbol has a total of 72 symmetries. These are best displayed by the definition of a Regge symbol which is a one-to-one correspondence between it and a 3-j symbol and assumes the properties of a semi-magic square[2]

${\displaystyle R={\begin{array}{|ccc|}\hline -j_{1}+j_{2}+j_{3}&j_{1}-j_{2}+j_{3}&j_{1}+j_{2}-j_{3}\\j_{1}-m_{1}&j_{2}-m_{2}&j_{3}-m_{3}\\j_{1}+m_{1}&j_{2}+m_{2}&j_{3}+m_{3}\\\hline \end{array}}}$

whereby the 72 symmetries now correspond to 3! row and 3! column interchanges plus a transposition of the matrix. These facts can be used to devise an effective storage scheme.[3]

## Orthogonality relations

A system of two angular momenta with magnitudes ${\displaystyle j_{1}}$ and ${\displaystyle j_{2}}$, say, can be described either in terms of the uncoupled basis states (labeled by the quantum numbers ${\displaystyle m_{1}}$ and ${\displaystyle m_{2}}$), or the coupled basis states (labeled by ${\displaystyle j_{3}}$ and ${\displaystyle m_{3}}$). The 3-j symbols constitute a unitary transformation between these two bases, and this unitarity implies the orthogonality relations,

${\displaystyle (2j+1)\sum _{m_{1}m_{2}}{\begin{pmatrix}j_{1}&j_{2}&j\\m_{1}&m_{2}&m\end{pmatrix}}{\begin{pmatrix}j_{1}&j_{2}&j'\\m_{1}&m_{2}&m'\end{pmatrix}}=\delta _{jj'}\delta _{mm'}.}$
${\displaystyle \sum _{jm}(2j+1){\begin{pmatrix}j_{1}&j_{2}&j\\m_{1}&m_{2}&m\end{pmatrix}}{\begin{pmatrix}j_{1}&j_{2}&j\\m_{1}'&m_{2}'&m\end{pmatrix}}=\delta _{m_{1}m_{1}'}\delta _{m_{2}m_{2}'}.}$

## Relation to spherical harmonics

The 3-jm symbols give the integral of the products of three spherical harmonics

{\displaystyle {\begin{aligned}&{}\quad \int Y_{l_{1}m_{1}}(\theta ,\varphi )Y_{l_{2}m_{2}}(\theta ,\varphi )Y_{l_{3}m_{3}}(\theta ,\varphi )\,\sin \theta \,\mathrm {d} \theta \,\mathrm {d} \varphi \\&={\sqrt {\frac {(2l_{1}+1)(2l_{2}+1)(2l_{3}+1)}{4\pi }}}{\begin{pmatrix}l_{1}&l_{2}&l_{3}\\0&0&0\end{pmatrix}}{\begin{pmatrix}l_{1}&l_{2}&l_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}\end{aligned}}}

with ${\displaystyle l_{1}}$, ${\displaystyle l_{2}}$ and ${\displaystyle l_{3}}$ integers.

### Relation to integrals of spin-weighted spherical harmonics

Similar relations exist for the spin-weighted spherical harmonics if ${\displaystyle s_{1}+s_{2}+s_{3}=0}$:

{\displaystyle {\begin{aligned}&{}\quad \int d{\mathbf {\hat {n}} }\,{}_{s_{1}}Y_{j_{1}m_{1}}({\mathbf {\hat {n}} })\,{}_{s_{2}}Y_{j_{2}m_{2}}({\mathbf {\hat {n}} })\,{}_{s_{3}}Y_{j_{3}m_{3}}({\mathbf {\hat {n}} })\\[8pt]&={\sqrt {\frac {(2j_{1}+1)(2j_{2}+1)(2j_{3}+1)}{4\pi }}}{\begin{pmatrix}j_{1}&j_{2}&j_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}{\begin{pmatrix}j_{1}&j_{2}&j_{3}\\-s_{1}&-s_{2}&-s_{3}\end{pmatrix}}\end{aligned}}}

## Recursion relations

{\displaystyle {\begin{aligned}&{}\quad -{\sqrt {(l_{3}\mp s_{3})(l_{3}\pm s_{3}+1)}}{\begin{pmatrix}l_{1}&l_{2}&l_{3}\\s_{1}&s_{2}&s_{3}\pm 1\end{pmatrix}}\\&={\sqrt {(l_{1}\mp s_{1})(l_{1}\pm s_{1}+1)}}{\begin{pmatrix}l_{1}&l_{2}&l_{3}\\s_{1}\pm 1&s_{2}&s_{3}\end{pmatrix}}+{\sqrt {(l_{2}\mp s_{2})(l_{2}\pm s_{2}+1)}}{\begin{pmatrix}l_{1}&l_{2}&l_{3}\\s_{1}&s_{2}\pm 1&s_{3}\end{pmatrix}}\end{aligned}}}

## Asymptotic expressions

For ${\displaystyle l_{1}\ll l_{2},l_{3}}$ a non-zero 3-j symbol has

${\displaystyle {\begin{pmatrix}l_{1}&l_{2}&l_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}\approx (-1)^{l_{3}+m_{3}}{\frac {d_{m_{1},l_{3}-l_{2}}^{l_{1}}(\theta )}{\sqrt {2l_{3}+1}}}}$

where ${\displaystyle \cos(\theta )=-2m_{3}/(2l_{3}+1)}$ and ${\displaystyle d_{mn}^{l}}$ is a Wigner function. Generally a better approximation obeying the Regge symmetry is given by

${\displaystyle {\begin{pmatrix}l_{1}&l_{2}&l_{3}\\m_{1}&m_{2}&m_{3}\end{pmatrix}}\approx (-1)^{l_{3}+m_{3}}{\frac {d_{m_{1},l_{3}-l_{2}}^{l_{1}}(\theta )}{\sqrt {l_{2}+l_{3}+1}}}}$

where ${\displaystyle \cos(\theta )=(m_{2}-m_{3})/(l_{2}+l_{3}+1)}$.

## Other properties

${\displaystyle \sum _{m}(-1)^{j-m}{\begin{pmatrix}j&j&J\\m&-m&0\end{pmatrix}}={\sqrt {2j+1}}~\delta _{J0}}$
${\displaystyle {\frac {1}{2}}\int _{-1}^{1}P_{l_{1}}(x)P_{l_{2}}(x)P_{l}(x)\,dx={\begin{pmatrix}l&l_{1}&l_{2}\\0&0&0\end{pmatrix}}^{2}}$