Jump to content

5-Aminotetrazole

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 118.139.147.105 (talk) at 03:00, 24 April 2018 (Added updates on the application of 5-aminotetrazole.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

5-Aminotetrazole
Names
IUPAC name
1H-Tetrazol-5-ylamine
Other names
5-ATZ
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.022.348 Edit this at Wikidata
  • InChI=1S/CH3N5/c2-1-3-5-6-4-1/h(H3,2,3,4,5,6)
    Key: ULRPISSMEBPJLN-UHFFFAOYSA-N
  • InChI=1/CH3N5/c2-1-3-5-6-4-1/h(H3,2,3,4,5,6)
    Key: ULRPISSMEBPJLN-UHFFFAOYAD
  • c1([nH]nnn1)N
Properties
CH3N5
Molar mass 85.070 g·mol−1
Appearance White solid
Density 1.502 g/cm3
Melting point 201–205 °C (394–401 °F; 474–478 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

5-Aminotetrazole is an organic compound with the formula HN4CNH2. It is a white solid that can be obtained both in anhydrous and hydrated forms. The compound has a particularly high nitrogen content of 80%. Partly for this reason, the compound is prone to decomposition to nitrogen gas (N2). It has been widely investigated for gas-generating systems, such as airbags and blowing agents.[1]

The molecule is planar.[2] The hydrogen bonding pattern in the hydrate supports the assignment of NH being adjacent to carbon in the ring.[3]

5-Aminotetrazole has found applications in heterocyclic chemistry, particularly as a synthon for numerous multicomponent reactions.[4]

References

  1. ^ Lesnikovich, A. I.; Ivashkevich, O. A.; Levchik, S. V.; Balabanovich, A. I.; Gaponik, P. N.; Kulak, A. A. "Thermal decomposition of aminotetrazoles" Thermochimica Acta 2002, vol. 388, pp. 233-251. doi:10.1016/S0040-6031(02)00027-8
  2. ^ Hiroshi Fujihisa, Kazumasa Honda, Shigeaki Obata, Hiroshi Yamawaki, Satoshi Takeya, Yoshito Gotoha, Takehiro Matsunaga "Crystal structure of anhydrous 5-aminotetrazole and its high-pressure behavior" CrystEngComm, 2011, volume 13, pp. 99-102. doi:10.1039/C0CE00278J
  3. ^ D. D. Bray and J. G. White "Refinement of the structure of 5-aminotetrazole monohydrate" Acta Crystallogr. (1979). B35, pp. 3089-3091.doi:10.1107/S0567740879011493
  4. ^ Dolzhenko, A. V. (2017). "5-Aminotetrazole as a Building Block for Multicomponent Reactions (Review)". HETEROCYCLES. 94 (10): 1819–1846. doi:10.3987/rev-17-867.