Jump to content

ZNF367

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Kashmiri (talk | contribs) at 13:39, 22 July 2023 (MOS violation – not the correct place to add "See also" links, and linked article being considered for deletion anyway). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Zinc finger protein 367 is a protein that in humans is encoded by the ZNF367 gene.[1] The human gene is also known as ZFF29 and CDC14B; the orthologue in mice is Zfp367.[1] ZNF367 contains a unique Cys2His2 zinc finger motif and is a member of the zinc finger protein family.[2]

Model organisms

Model organisms have been used in the study of ZNF367 function. A conditional knockout mouse line, called Zfp367tm1a(KOMP)Wtsi[7][8] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[9][10][11]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[5][12] Twenty six tests were carried out on mutant mice, but no significant abnormalities were observed.[5]

References

  1. ^ a b "Zinc finger protein 367". Retrieved 2011-12-07.
  2. ^ Murate, T.; Asano, H.; Naoe, T.; Saito, H.; Stamatoyannopoulos, G. (2004). "Molecular cloning and characterization of ZFF29: A protein containing a unique Cys2His2 zinc-finger motif". Biochemical Journal. 384 (3): 647–653. doi:10.1042/BJ20040394. PMC 1134151. PMID 15344908.
  3. ^ "Salmonella infection data for Zfp367". Wellcome Trust Sanger Institute.
  4. ^ "Citrobacter infection data for Zfp367". Wellcome Trust Sanger Institute.
  5. ^ a b c Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID 85911512.
  6. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  7. ^ "International Knockout Mouse Consortium".
  8. ^ "Mouse Genome Informatics".
  9. ^ Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  10. ^ Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  11. ^ Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
  12. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.{{cite journal}}: CS1 maint: unflagged free DOI (link)

Further reading

  • Gilligan, P.; Brenner, S.; Venkatesh, B. (2002). "Fugu and human sequence comparison identifies novel human genes and conserved non-coding sequences". Gene. 294 (1–2): 35–44. doi:10.1016/S0378-1119(02)00793-X. PMID 12234665.