Jump to content

Class automorphism

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by BD2412 (talk | contribs) at 18:15, 21 February 2014 (Fixing links to disambiguation pages using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, in the realm of group theory, a class automorphism is an automorphism of a group that sends each element to within its conjugacy class. The class automorphisms form a subgroup of the automorphism group. Some facts:

For infinite groups, an example of a class automorphism that is not inner is the following: take the finitary symmetric group on countably many elements and consider conjugation by an infinitary permutation. This conjugation defines an outer automorphism on the group of finitary permutations. However, for any specific finitary permutation, we can find a finitary permutation whose conjugation has the same effect as this infinitary permutation. This is essentially because the infinitary permutation takes permutations of finite supports to permutations of finite support.

For finite groups, the classical example is a group of order 32 obtained as the semidirect product of the cyclic ring on 8 elements, by its group of units acting via multiplication. Finding a class automorphism in the stability group that is not inner boils down to finding a cocycle for the action that is locally a coboundary but is not a global coboundary.