In combinatorial mathematics , a q -exponential is a q -analog of the exponential function ,
namely the eigenfunction of a q -derivative. There are many q -derivatives, for example, the classical q -derivative , the Askey-Wilson operator, etc. Therefore, unlike the classical exponentials, q -exponentials are not unique. For example,
e
q
(
z
)
{\displaystyle e_{q}(z)}
is the q -exponential corresponding to the classical q -derivative while
E
q
(
z
)
{\displaystyle {\mathcal {E}}_{q}(z)}
are eigenfunctions of the Askey-Wilson operators.
Definition
The q -exponential
e
q
(
z
)
{\displaystyle e_{q}(z)}
is defined as
e
q
(
z
)
=
∑
n
=
0
∞
z
n
[
n
]
q
!
=
∑
n
=
0
∞
z
n
(
1
−
q
)
n
(
q
;
q
)
n
=
∑
n
=
0
∞
z
n
(
1
−
q
)
n
(
1
−
q
n
)
(
1
−
q
n
−
1
)
⋯
(
1
−
q
)
{\displaystyle e_{q}(z)=\sum _{n=0}^{\infty }{\frac {z^{n}}{[n]_{q}!}}=\sum _{n=0}^{\infty }{\frac {z^{n}(1-q)^{n}}{(q;q)_{n}}}=\sum _{n=0}^{\infty }z^{n}{\frac {(1-q)^{n}}{(1-q^{n})(1-q^{n-1})\cdots (1-q)}}}
where
[
n
]
q
!
{\displaystyle [n]_{q}!}
is the q -factorial and
(
q
;
q
)
n
=
(
1
−
q
n
)
(
1
−
q
n
−
1
)
⋯
(
1
−
q
)
{\displaystyle (q;q)_{n}=(1-q^{n})(1-q^{n-1})\cdots (1-q)}
is the q -Pochhammer symbol . That this is the q -analog of the exponential follows from the property
(
d
d
z
)
q
e
q
(
z
)
=
e
q
(
z
)
{\displaystyle \left({\frac {d}{dz}}\right)_{q}e_{q}(z)=e_{q}(z)}
where the derivative on the left is the q -derivative . The above is easily verified by considering the q -derivative of the monomial
(
d
d
z
)
q
z
n
=
z
n
−
1
1
−
q
n
1
−
q
=
[
n
]
q
z
n
−
1
.
{\displaystyle \left({\frac {d}{dz}}\right)_{q}z^{n}=z^{n-1}{\frac {1-q^{n}}{1-q}}=[n]_{q}z^{n-1}.}
Here,
[
n
]
q
{\displaystyle [n]_{q}}
is the q -bracket .
For other definitions of the q -exponential function, see Exton (1983) harvtxt error: no target: CITEREFExton1983 (help ) , Ismail & Zhang (1994) harvtxt error: no target: CITEREFIsmailZhang1994 (help ) , Suslov (2003) harvtxt error: no target: CITEREFSuslov2003 (help ) and Cieslinski (2011) harvtxt error: no target: CITEREFCieslinski2011 (help ) .
Properties
For real
q
>
1
{\displaystyle q>1}
, the function
e
q
(
z
)
{\displaystyle e_{q}(z)}
is an entire function of
z
{\displaystyle z}
. For
q
<
1
{\displaystyle q<1}
,
e
q
(
z
)
{\displaystyle e_{q}(z)}
is regular in the disk
|
z
|
<
1
/
(
1
−
q
)
{\displaystyle |z|<1/(1-q)}
.
Note the inverse,
e
q
(
z
)
e
1
/
q
(
−
z
)
=
1
{\displaystyle ~e_{q}(z)~e_{1/q}(-z)=1}
.
If
x
y
=
q
y
x
{\displaystyle xy=qyx}
,
e
q
(
x
)
e
q
(
y
)
=
e
q
(
x
+
y
)
{\displaystyle e_{q}(x)e_{q}(y)=e_{q}(x+y)}
holds.
Relations
For
−
1
<
q
<
1
{\displaystyle -1<q<1}
, a function that is closely related is
E
q
(
z
)
.
{\displaystyle E_{q}(z).}
It is a special case of the basic hypergeometric series ,
E
q
(
z
)
=
1
ϕ
1
(
0
0
;
z
)
=
∑
n
=
0
∞
q
(
n
2
)
(
−
z
)
n
(
q
;
q
)
n
=
∏
n
=
0
∞
(
1
−
q
n
z
)
=
(
z
;
q
)
∞
.
{\displaystyle E_{q}(z)=\;_{1}\phi _{1}\left({\scriptstyle {0 \atop 0}}\,;\,z\right)=\sum _{n=0}^{\infty }{\frac {q^{\binom {n}{2}}(-z)^{n}}{(q;q)_{n}}}=\prod _{n=0}^{\infty }(1-q^{n}z)=(z;q)_{\infty }.}
Clearly,
lim
q
→
1
E
q
(
z
(
1
−
q
)
)
=
lim
q
→
1
∑
n
=
0
∞
q
(
n
2
)
(
1
−
q
)
n
(
q
;
q
)
n
(
−
z
)
n
=
e
−
z
.
{\displaystyle \lim _{q\to 1}E_{q}\left(z(1-q)\right)=\lim _{q\to 1}\sum _{n=0}^{\infty }{\frac {q^{\binom {n}{2}}(1-q)^{n}}{(q;q)_{n}}}(-z)^{n}=e^{-z}.~}
Relation with Dilogarithm
e
q
(
x
)
{\displaystyle e_{q}(x)}
has the following infinite product representation:
e
q
(
x
)
=
(
∏
k
=
0
∞
(
1
−
q
k
(
1
−
q
)
x
)
)
−
1
.
{\displaystyle e_{q}(x)=\left(\prod _{k=0}^{\infty }(1-q^{k}(1-q)x)\right)^{-1}.}
On the other hand,
log
(
1
−
x
)
=
−
∑
n
=
1
∞
x
n
n
{\displaystyle \log(1-x)=-\sum _{n=1}^{\infty }{\frac {x^{n}}{n}}}
holds.
When
|
q
|
<
1
{\displaystyle |q|<1}
,
log
e
q
(
x
)
=
−
∑
k
=
0
∞
log
(
1
−
q
k
(
1
−
q
)
x
)
=
∑
k
=
0
∞
∑
n
=
1
∞
(
q
k
(
1
−
q
)
x
)
n
n
=
∑
n
=
1
∞
(
(
1
−
q
)
x
)
n
(
1
−
q
n
)
n
=
1
1
−
q
∑
n
=
1
∞
(
(
1
−
q
)
x
)
n
[
n
]
q
n
.
{\displaystyle \log e_{q}(x)=-\sum _{k=0}^{\infty }\log(1-q^{k}(1-q)x)=\sum _{k=0}^{\infty }\sum _{n=1}^{\infty }{\frac {(q^{k}(1-q)x)^{n}}{n}}=\sum _{n=1}^{\infty }{\frac {((1-q)x)^{n}}{(1-q^{n})n}}={\frac {1}{1-q}}\sum _{n=1}^{\infty }{\frac {((1-q)x)^{n}}{[n]_{q}n}}.}
By taking the limit
q
→
1
{\displaystyle q\to 1}
,
lim
q
→
1
(
1
−
q
)
log
e
q
(
x
/
(
1
−
q
)
)
=
L
i
2
(
x
)
,
{\displaystyle \lim _{q\to 1}(1-q)\log e_{q}(x/(1-q))=\mathrm {Li} _{2}(x),}
where
L
i
2
(
x
)
{\displaystyle \mathrm {Li} _{2}(x)}
is the dilogarithm .
References
Exton , H. (1983), q-Hypergeometric Functions and Applications , New York: Halstead Press, Chichester: Ellis Horwood, ISBN 0853124914 , ISBN 0470274530 , ISBN 978-0470274538
Gasper , G. & Rahman , M. (2004), Basic Hypergeometric Series , Cambridge University Press, ISBN 0521833574
Ismail , M. E. H. (2005), Classical and Quantum Orthogonal Polynomials in One Variable , Cambridge University Press.
Ismail , M. E. H. & Zhang , R. (1994), “Diagonalization of certain integral operators,” Advances in Math. 108, 1–33.
Ismail , M.E.H. Rahman , M. & Zhang , R. (1996), Diagonalization of certain integral operators II, J. Comp. Appl. Math. 68, 163-196.
Jackson, F. H. (1908), "On q-functions and a certain difference operator", Transactions of the Royal Society of Edinburgh , 46 , 253-281.