Jump to content

Almost open linear map

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Mgkrupa (talk | contribs) at 01:29, 23 July 2020 (→‎See also). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In functional analysis and related areas of mathematics, an almost open linear map between topological vector spacess (TVSs) is a linear operator that satisfies a condition similar to, but weaker than, the condition of being an open map.

Definition

Let T : XY be a linear operator between two TVSs. We say that T is almost open if for any neighborhood U of 0 in X, the closure of T(U) in Y is a neighborhood of the origin.

Note that some authors call T is almost open if for any neighborhood U of 0 in X, the closure of T(U) in T(X) (rather than in Y) is a neighborhood of the origin; this article will not consider this definition.[1]

If T : XY is a bijective linear operator, then T is almost open if and only if T−1 is almost continuous.[1]

Properties

Note that if a linear operator T : XY is almost open then because T(X) is a vector subspace of Y that contains a neighborhood of 0 in Y, T : XY is necessarily surjective. For this reason many authors require surjectivity as part of the definition of "almost open".

Open mapping theorems

Theorem:[1] If X is a complete pseudometrizable TVS, Y is a Hausdorff TVS, and T : XY is a closed and almost open linear surjection, then T is an open map.
Theorem:[1] If T : XY is a surjective linear operator from a locally convex space X onto a barrelled space Y then T is almost open.
Theorem:[1] If T : XY is a surjective linear operator from a TVS X onto a Baire space Y then T is almost open.
Theorem:[1] Suppose T : XY is a continuous linear operator from a complete pseudometrizable TVS X into a Hausdorff TVS Y. If the image of T is non-meager in Y then T : XY is a surjective open map and Y is a complete metrizable space.

See also

References

  1. ^ a b c d e f Narici 2011, pp. 466–468.
  • Bourbaki, Nicolas (1950). "Sur certains espaces vectoriels topologiques". Annales de l'Institut Fourier (in French). 2: 5–16 (1951). MR 0042609.
  • Husain, Taqdir (1978). Barrelledness in topological and ordered vector spaces. Berlin New York: Springer-Verlag. ISBN 3-540-09096-7. OCLC 4493665. {{cite book}}: Invalid |ref=harv (help)
  • Jarhow, Hans (1981). Locally convex spaces. Teubner. ISBN 978-3-322-90561-1. {{cite book}}: Invalid |ref=harv (help)
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. MR 0248498. OCLC 840293704.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Robertson, Alex P.; Robertson, Wendy J. (1980). Topological Vector Spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge England: Cambridge University Press. ISBN 978-0-521-29882-7. OCLC 589250.
  • Robertson, Alex P.; Robertson, Wendy J. (1964). Topological vector spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge University Press. pp. 65–75.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
  • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.