Jump to content

Priority R-tree

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Citation bot (talk | contribs) at 08:29, 24 October 2020 (Alter: template type. | You can use this bot yourself. Report bugs here. | Suggested by AManWithNoPlan | All pages linked from cached copy of User:AManWithNoPlan/sandbox3 | via #UCB_webform_linked 735/2623). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Priority R-tree is a worst-case asymptotically optimal alternative to the spatial tree R-tree. It was first proposed by Arge, De Berg, Haverkort and Yi, K. in an article from 2004.[1] The prioritized R-tree is essentially a hybrid between a k-dimensional tree and a r-tree in that it defines a given object's N-dimensional bounding volume (called Minimum Bounding Rectangles - MBR) as a point in N-dimensions, represented by the ordered pair of the rectangles. The term prioritized arrives from the introduction of four priority-leaves that represents the most extreme values of each dimensions, included in every branch of the tree. Before answering a window-query by traversing the sub-branches, the prioritized R-tree first checks for overlap in its priority nodes. The sub-branches are traversed (and constructed) by checking whether the least value of the first dimension of the query is above the value of the sub-branches. This gives access to a quick indexation by the value of the first dimension of the bounding box.

Performance

Arge et al. writes that the priority tree always answers window-queries with I/Os, where N is the number of d-dimensional (hyper-) rectangles stored in the R-tree, B is the disk block size, and T is the output size.

Dimensions

In the case of N = 2 the rectangle is represented by and the MBR thus four corners .

See also

References

  1. ^ L. Arge; M. de Berg; H. J. Haverkort; K. Yi (2004). "The Priority R-Tree: A Practically Efficient and Worst-Case Optimal R-Tree" (PDF). SIGMOD. Retrieved 12 October 2011.