In continuum mechanics , an Arruda–Boyce model [ 1] is a hyperelastic constitutive model used to describe the mechanical behavior of rubber and other polymeric substances. This model is based on the statistical mechanics of a material with a cubic representative volume element containing eight chains along the diagonal directions. The material is assumed to be incompressible . The model is named after Ellen Arruda and Mary Cunningham Boyce , who published it in 1993.[ 1]
The strain energy density function for the incompressible Arruda–Boyce model is given by[ 2]
W
=
N
k
B
θ
n
[
β
λ
chain
−
n
ln
(
sinh
β
β
)
]
,
{\displaystyle W=Nk_{B}\theta {\sqrt {n}}\left[\beta \lambda _{\text{chain}}-{\sqrt {n}}\ln \left({\cfrac {\sinh \beta }{\beta }}\right)\right],}
where
n
{\displaystyle n}
is the number of chain segments,
k
B
{\displaystyle k_{B}}
is the Boltzmann constant ,
θ
{\displaystyle \theta }
is the temperature in kelvins ,
N
{\displaystyle N}
is the number of chains in the network of a cross-linked polymer,
λ
c
h
a
i
n
=
I
1
3
,
β
=
L
−
1
(
λ
chain
n
)
,
{\displaystyle \lambda _{\mathrm {chain} }={\sqrt {\tfrac {I_{1}}{3}}},\quad \beta ={\mathcal {L}}^{-1}\left({\cfrac {\lambda _{\text{chain}}}{\sqrt {n}}}\right),}
where
I
1
{\displaystyle I_{1}}
is the first invariant of the left Cauchy–Green deformation tensor, and
L
−
1
(
x
)
{\displaystyle {\mathcal {L}}^{-1}(x)}
is the inverse Langevin function which can be approximated by
L
−
1
(
x
)
=
{
1.31
tan
(
1.59
x
)
+
0.91
x
for
|
x
|
<
0.841
,
1
sgn
(
x
)
−
x
for
0.841
≤
|
x
|
<
1.
{\displaystyle {\mathcal {L}}^{-1}(x)={\begin{cases}1.31\tan(1.59x)+0.91x&{\text{for}}\ |x|<0.841,\\{\tfrac {1}{\operatorname {sgn}(x)-x}}&{\text{for}}\ 0.841\leq |x|<1.\end{cases}}}
For small deformations the Arruda–Boyce model reduces to the Gaussian network based neo-Hookean solid model. It can be shown[ 3] that the Gent model is a simple and accurate approximation of the Arruda–Boyce model.
Alternative expressions for the Arruda–Boyce model[ edit ]
An alternative form of the Arruda–Boyce model, using the first five terms of the inverse Langevin function, is[ 4]
W
=
C
1
[
1
2
(
I
1
−
3
)
+
1
20
N
(
I
1
2
−
9
)
+
11
1050
N
2
(
I
1
3
−
27
)
+
19
7000
N
3
(
I
1
4
−
81
)
+
519
673750
N
4
(
I
1
5
−
243
)
]
{\displaystyle W=C_{1}\left[{\tfrac {1}{2}}(I_{1}-3)+{\tfrac {1}{20N}}(I_{1}^{2}-9)+{\tfrac {11}{1050N^{2}}}(I_{1}^{3}-27)+{\tfrac {19}{7000N^{3}}}(I_{1}^{4}-81)+{\tfrac {519}{673750N^{4}}}(I_{1}^{5}-243)\right]}
where
C
1
{\displaystyle C_{1}}
is a material constant. The quantity
N
{\displaystyle N}
can also be interpreted as a measure of the limiting network stretch.
If
λ
m
{\displaystyle \lambda _{m}}
is the stretch at which the polymer chain network becomes locked, we can express the Arruda–Boyce strain energy density as
W
=
C
1
[
1
2
(
I
1
−
3
)
+
1
20
λ
m
2
(
I
1
2
−
9
)
+
11
1050
λ
m
4
(
I
1
3
−
27
)
+
19
7000
λ
m
6
(
I
1
4
−
81
)
+
519
673750
λ
m
8
(
I
1
5
−
243
)
]
{\displaystyle W=C_{1}\left[{\tfrac {1}{2}}(I_{1}-3)+{\tfrac {1}{20\lambda _{m}^{2}}}(I_{1}^{2}-9)+{\tfrac {11}{1050\lambda _{m}^{4}}}(I_{1}^{3}-27)+{\tfrac {19}{7000\lambda _{m}^{6}}}(I_{1}^{4}-81)+{\tfrac {519}{673750\lambda _{m}^{8}}}(I_{1}^{5}-243)\right]}
We may alternatively express the Arruda–Boyce model in the form
W
=
C
1
∑
i
=
1
5
α
i
β
i
−
1
(
I
1
i
−
3
i
)
{\displaystyle W=C_{1}~\sum _{i=1}^{5}\alpha _{i}~\beta ^{i-1}~(I_{1}^{i}-3^{i})}
where
β
:=
1
N
=
1
λ
m
2
{\displaystyle \beta :={\tfrac {1}{N}}={\tfrac {1}{\lambda _{m}^{2}}}}
and
α
1
:=
1
2
;
α
2
:=
1
20
;
α
3
:=
11
1050
;
α
4
:=
19
7000
;
α
5
:=
519
673750
.
{\displaystyle \alpha _{1}:={\tfrac {1}{2}}~;~~\alpha _{2}:={\tfrac {1}{20}}~;~~\alpha _{3}:={\tfrac {11}{1050}}~;~~\alpha _{4}:={\tfrac {19}{7000}}~;~~\alpha _{5}:={\tfrac {519}{673750}}.}
If the rubber is compressible , a dependence on
J
=
det
(
F
)
{\displaystyle J=\det({\boldsymbol {F}})}
can be introduced into the strain energy density;
F
{\displaystyle {\boldsymbol {F}}}
being the deformation gradient . Several possibilities exist, among which the Kaliske–Rothert[ 5] extension has been found to be reasonably accurate. With that extension, the Arruda-Boyce strain energy density function can be expressed as
W
=
D
1
(
J
2
−
1
2
−
ln
J
)
+
C
1
∑
i
=
1
5
α
i
β
i
−
1
(
I
¯
1
i
−
3
i
)
{\displaystyle W=D_{1}\left({\tfrac {J^{2}-1}{2}}-\ln J\right)+C_{1}~\sum _{i=1}^{5}\alpha _{i}~\beta ^{i-1}~({\overline {I}}_{1}^{i}-3^{i})}
where
D
1
{\displaystyle D_{1}}
is a material constant and
I
¯
1
=
I
1
J
−
2
/
3
{\displaystyle {\overline {I}}_{1}={I}_{1}J^{-2/3}}
. For consistency with linear elasticity , we must have
D
1
=
κ
2
{\displaystyle D_{1}={\tfrac {\kappa }{2}}}
where
κ
{\displaystyle \kappa }
is the bulk modulus .
Consistency condition [ edit ]
For the incompressible Arruda–Boyce model to be consistent with linear elasticity, with
μ
{\displaystyle \mu }
as the shear modulus of the material, the following condition has to be satisfied:
∂
W
∂
I
1
|
I
1
=
3
=
μ
2
.
{\displaystyle {\cfrac {\partial W}{\partial I_{1}}}{\biggr |}_{I_{1}=3}={\frac {\mu }{2}}\,.}
From the Arruda–Boyce strain energy density function, we have,
∂
W
∂
I
1
=
C
1
∑
i
=
1
5
i
α
i
β
i
−
1
I
1
i
−
1
.
{\displaystyle {\cfrac {\partial W}{\partial I_{1}}}=C_{1}~\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\,.}
Therefore, at
I
1
=
3
{\displaystyle I_{1}=3}
,
μ
=
2
C
1
∑
i
=
1
5
i
α
i
β
i
−
1
I
1
i
−
1
.
{\displaystyle \mu =2C_{1}~\sum _{i=1}^{5}i\,\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\,.}
Substituting in the values of
α
i
{\displaystyle \alpha _{i}}
leads to the consistency condition
μ
=
C
1
(
1
+
3
5
λ
m
2
+
99
175
λ
m
4
+
513
875
λ
m
6
+
42039
67375
λ
m
8
)
.
{\displaystyle \mu =C_{1}\left(1+{\tfrac {3}{5\lambda _{m}^{2}}}+{\tfrac {99}{175\lambda _{m}^{4}}}+{\tfrac {513}{875\lambda _{m}^{6}}}+{\tfrac {42039}{67375\lambda _{m}^{8}}}\right)\,.}
The Cauchy stress for the incompressible Arruda–Boyce model is given by
σ
=
−
p
1
+
2
∂
W
∂
I
1
B
=
−
p
1
+
2
C
1
[
∑
i
=
1
5
i
α
i
β
i
−
1
I
1
i
−
1
]
B
{\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {\mathit {1}}}+2~{\cfrac {\partial W}{\partial I_{1}}}~{\boldsymbol {B}}=-p~{\boldsymbol {\mathit {1}}}+2C_{1}~\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]{\boldsymbol {B}}}
Stress-strain curves under uniaxial extension for Arruda–Boyce model compared with various hyperelastic material models.
For uniaxial extension in the
n
1
{\displaystyle \mathbf {n} _{1}}
-direction, the principal stretches are
λ
1
=
λ
,
λ
2
=
λ
3
{\displaystyle \lambda _{1}=\lambda ,~\lambda _{2}=\lambda _{3}}
. From incompressibility
λ
1
λ
2
λ
3
=
1
{\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1}
. Hence
λ
2
2
=
λ
3
2
=
1
/
λ
{\displaystyle \lambda _{2}^{2}=\lambda _{3}^{2}=1/\lambda }
.
Therefore,
I
1
=
λ
1
2
+
λ
2
2
+
λ
3
2
=
λ
2
+
2
λ
.
{\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=\lambda ^{2}+{\cfrac {2}{\lambda }}~.}
The left Cauchy–Green deformation tensor can then be expressed as
B
=
λ
2
n
1
⊗
n
1
+
1
λ
(
n
2
⊗
n
2
+
n
3
⊗
n
3
)
.
{\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+{\cfrac {1}{\lambda }}~(\mathbf {n} _{2}\otimes \mathbf {n} _{2}+\mathbf {n} _{3}\otimes \mathbf {n} _{3})~.}
If the directions of the principal stretches are oriented with the coordinate basis vectors, we have
σ
11
=
−
p
+
2
C
1
λ
2
[
∑
i
=
1
5
i
α
i
β
i
−
1
I
1
i
−
1
]
σ
22
=
−
p
+
2
C
1
λ
[
∑
i
=
1
5
i
α
i
β
i
−
1
I
1
i
−
1
]
=
σ
33
.
{\displaystyle {\begin{aligned}\sigma _{11}&=-p+2C_{1}\lambda ^{2}\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]\\\sigma _{22}&=-p+{\cfrac {2C_{1}}{\lambda }}\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]=\sigma _{33}~.\end{aligned}}}
If
σ
22
=
σ
33
=
0
{\displaystyle \sigma _{22}=\sigma _{33}=0}
, we have
p
=
2
C
1
λ
[
∑
i
=
1
5
i
α
i
β
i
−
1
I
1
i
−
1
]
.
{\displaystyle p={\cfrac {2C_{1}}{\lambda }}\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]~.}
Therefore,
σ
11
=
2
C
1
(
λ
2
−
1
λ
)
[
∑
i
=
1
5
i
α
i
β
i
−
1
I
1
i
−
1
]
.
{\displaystyle \sigma _{11}=2C_{1}\left(\lambda ^{2}-{\cfrac {1}{\lambda }}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]~.}
The engineering strain is
λ
−
1
{\displaystyle \lambda -1\,}
. The engineering stress is
T
11
=
σ
11
/
λ
=
2
C
1
(
λ
−
1
λ
2
)
[
∑
i
=
1
5
i
α
i
β
i
−
1
I
1
i
−
1
]
.
{\displaystyle T_{11}=\sigma _{11}/\lambda =2C_{1}\left(\lambda -{\cfrac {1}{\lambda ^{2}}}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]~.}
Equibiaxial extension [ edit ]
For equibiaxial extension in the
n
1
{\displaystyle \mathbf {n} _{1}}
and
n
2
{\displaystyle \mathbf {n} _{2}}
directions, the principal stretches are
λ
1
=
λ
2
=
λ
{\displaystyle \lambda _{1}=\lambda _{2}=\lambda \,}
. From incompressibility
λ
1
λ
2
λ
3
=
1
{\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1}
. Hence
λ
3
=
1
/
λ
2
{\displaystyle \lambda _{3}=1/\lambda ^{2}\,}
.
Therefore,
I
1
=
λ
1
2
+
λ
2
2
+
λ
3
2
=
2
λ
2
+
1
λ
4
.
{\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=2~\lambda ^{2}+{\cfrac {1}{\lambda ^{4}}}~.}
The left Cauchy–Green deformation tensor can then be expressed as
B
=
λ
2
n
1
⊗
n
1
+
λ
2
n
2
⊗
n
2
+
1
λ
4
n
3
⊗
n
3
.
{\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+\lambda ^{2}~\mathbf {n} _{2}\otimes \mathbf {n} _{2}+{\cfrac {1}{\lambda ^{4}}}~\mathbf {n} _{3}\otimes \mathbf {n} _{3}~.}
If the directions of the principal stretches are oriented with the coordinate basis vectors, we have
σ
11
=
2
C
1
(
λ
2
−
1
λ
4
)
[
∑
i
=
1
5
i
α
i
β
i
−
1
I
1
i
−
1
]
=
σ
22
.
{\displaystyle \sigma _{11}=2C_{1}\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{4}}}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]=\sigma _{22}~.}
The engineering strain is
λ
−
1
{\displaystyle \lambda -1\,}
. The engineering stress is
T
11
=
σ
11
λ
=
2
C
1
(
λ
−
1
λ
5
)
[
∑
i
=
1
5
i
α
i
β
i
−
1
I
1
i
−
1
]
=
T
22
.
{\displaystyle T_{11}={\cfrac {\sigma _{11}}{\lambda }}=2C_{1}\left(\lambda -{\cfrac {1}{\lambda ^{5}}}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]=T_{22}~.}
Planar extension tests are carried out on thin specimens which are constrained from deforming in one direction. For planar extension in the
n
1
{\displaystyle \mathbf {n} _{1}}
directions with the
n
3
{\displaystyle \mathbf {n} _{3}}
direction constrained, the principal stretches are
λ
1
=
λ
,
λ
3
=
1
{\displaystyle \lambda _{1}=\lambda ,~\lambda _{3}=1}
. From incompressibility
λ
1
λ
2
λ
3
=
1
{\displaystyle \lambda _{1}~\lambda _{2}~\lambda _{3}=1}
. Hence
λ
2
=
1
/
λ
{\displaystyle \lambda _{2}=1/\lambda \,}
.
Therefore,
I
1
=
λ
1
2
+
λ
2
2
+
λ
3
2
=
λ
2
+
1
λ
2
+
1
.
{\displaystyle I_{1}=\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}=\lambda ^{2}+{\cfrac {1}{\lambda ^{2}}}+1~.}
The left Cauchy–Green deformation tensor can then be expressed as
B
=
λ
2
n
1
⊗
n
1
+
1
λ
2
n
2
⊗
n
2
+
n
3
⊗
n
3
.
{\displaystyle {\boldsymbol {B}}=\lambda ^{2}~\mathbf {n} _{1}\otimes \mathbf {n} _{1}+{\cfrac {1}{\lambda ^{2}}}~\mathbf {n} _{2}\otimes \mathbf {n} _{2}+\mathbf {n} _{3}\otimes \mathbf {n} _{3}~.}
If the directions of the principal stretches are oriented with the coordinate basis vectors, we have
σ
11
=
2
C
1
(
λ
2
−
1
λ
2
)
[
∑
i
=
1
5
i
α
i
β
i
−
1
I
1
i
−
1
]
;
σ
22
=
0
;
σ
33
=
2
C
1
(
1
−
1
λ
2
)
[
∑
i
=
1
5
i
α
i
β
i
−
1
I
1
i
−
1
]
.
{\displaystyle \sigma _{11}=2C_{1}\left(\lambda ^{2}-{\cfrac {1}{\lambda ^{2}}}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]~;~~\sigma _{22}=0~;~~\sigma _{33}=2C_{1}\left(1-{\cfrac {1}{\lambda ^{2}}}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]~.}
The engineering strain is
λ
−
1
{\displaystyle \lambda -1\,}
. The engineering stress is
T
11
=
σ
11
λ
=
2
C
1
(
λ
−
1
λ
3
)
[
∑
i
=
1
5
i
α
i
β
i
−
1
I
1
i
−
1
]
.
{\displaystyle T_{11}={\cfrac {\sigma _{11}}{\lambda }}=2C_{1}\left(\lambda -{\cfrac {1}{\lambda ^{3}}}\right)\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~I_{1}^{i-1}\right]~.}
The deformation gradient for a simple shear deformation has the form[ 6]
F
=
1
+
γ
e
1
⊗
e
2
{\displaystyle {\boldsymbol {F}}={\boldsymbol {1}}+\gamma ~\mathbf {e} _{1}\otimes \mathbf {e} _{2}}
where
e
1
,
e
2
{\displaystyle \mathbf {e} _{1},\mathbf {e} _{2}}
are reference orthonormal basis vectors in the plane of deformation and the shear deformation is given by
γ
=
λ
−
1
λ
;
λ
1
=
λ
;
λ
2
=
1
λ
;
λ
3
=
1
{\displaystyle \gamma =\lambda -{\cfrac {1}{\lambda }}~;~~\lambda _{1}=\lambda ~;~~\lambda _{2}={\cfrac {1}{\lambda }}~;~~\lambda _{3}=1}
In matrix form, the deformation gradient and the left Cauchy–Green deformation tensor may then be expressed as
F
=
[
1
γ
0
0
1
0
0
0
1
]
;
B
=
F
⋅
F
T
=
[
1
+
γ
2
γ
0
γ
1
0
0
0
1
]
{\displaystyle {\boldsymbol {F}}={\begin{bmatrix}1&\gamma &0\\0&1&0\\0&0&1\end{bmatrix}}~;~~{\boldsymbol {B}}={\boldsymbol {F}}\cdot {\boldsymbol {F}}^{T}={\begin{bmatrix}1+\gamma ^{2}&\gamma &0\\\gamma &1&0\\0&0&1\end{bmatrix}}}
Therefore,
I
1
=
t
r
(
B
)
=
3
+
γ
2
{\displaystyle I_{1}=\mathrm {tr} ({\boldsymbol {B}})=3+\gamma ^{2}}
and the Cauchy stress is given by
σ
=
−
p
1
+
2
C
1
[
∑
i
=
1
5
i
α
i
β
i
−
1
(
3
+
γ
2
)
i
−
1
]
B
{\displaystyle {\boldsymbol {\sigma }}=-p~{\boldsymbol {\mathit {1}}}+2C_{1}\left[\sum _{i=1}^{5}i~\alpha _{i}~\beta ^{i-1}~(3+\gamma ^{2})^{i-1}\right]~{\boldsymbol {B}}}
The Arruda–Boyce model is based on the statistical mechanics of polymer chains. In this approach, each macromolecule is described as a chain of
N
{\displaystyle N}
segments, each of length
l
{\displaystyle l}
. If we assume that the initial configuration of a chain can be described by a random walk , then the initial chain length is
r
0
=
l
N
{\displaystyle r_{0}=l{\sqrt {N}}}
If we assume that one end of the chain is at the origin, then the probability that a block of size
d
x
1
d
x
2
d
x
3
{\displaystyle dx_{1}dx_{2}dx_{3}}
around the origin will contain the other end of the chain,
(
x
1
,
x
2
,
x
3
)
{\displaystyle (x_{1},x_{2},x_{3})}
, assuming a Gaussian probability density function , is
p
(
x
1
,
x
2
,
x
3
)
=
b
3
π
3
/
2
exp
[
−
b
2
(
x
1
2
+
x
2
2
+
x
3
2
)
]
;
b
:=
3
2
N
l
2
{\displaystyle p(x_{1},x_{2},x_{3})={\cfrac {b^{3}}{\pi ^{3/2}}}~\exp[-b^{2}(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})]~;~~b:={\sqrt {\cfrac {3}{2Nl^{2}}}}}
The configurational entropy of a single chain from Boltzmann statistical mechanics is
s
=
c
−
k
B
b
2
r
2
{\displaystyle s=c-k_{B}b^{2}r^{2}}
where
c
{\displaystyle c}
is a constant. The total entropy in a network of
n
{\displaystyle n}
chains is therefore
Δ
S
=
−
1
2
n
k
B
(
λ
1
2
+
λ
2
2
+
λ
3
2
−
3
)
=
−
1
2
n
k
B
(
I
1
−
3
)
{\displaystyle \Delta S=-{\tfrac {1}{2}}nk_{B}(\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda _{3}^{2}-3)=-{\tfrac {1}{2}}nk_{B}(I_{1}-3)}
where an affine deformation has been assumed. Therefore the strain energy of the deformed network is
W
=
−
θ
d
S
=
1
2
n
k
B
θ
(
I
1
−
3
)
{\displaystyle W=-\theta \,dS={\tfrac {1}{2}}nk_{B}\theta (I_{1}-3)}
where
θ
{\displaystyle \theta }
is the temperature.
Notes and references [ edit ]
^ a b Arruda, E. M. and Boyce, M. C. , 1993, A three-dimensional model for the large stretch behavior of rubber elastic materials, , J. Mech. Phys. Solids, 41(2), pp. 389–412.
^ Bergstrom, J. S. and Boyce, M. C., 2001, Deformation of Elastomeric Networks: Relation between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity , Macromolecules, 34 (3), pp 614–626, doi :10.1021/ma0007942 .
^ Horgan, C. O. and Saccomandi, G., 2002, A molecular-statistical basis for the Gent constitutive model of rubber elasticity , Journal of Elasticity, 68(1), pp. 167–176.
^ Hiermaier, S. J., 2008, Structures under Crash and Impact , Springer.
^ Kaliske, M. and Rothert, H., 1997, On the finite element implementation of rubber-like materials at finite strains , Engineering Computations, 14(2), pp. 216–232.
^ Ogden, R. W., 1984, Non-linear elastic deformations , Dover.