Arthrobacter agilis

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Arthrobacter agilis
Scientific classification
Kingdom: Bacteria
Phylum: Actinobacteria
Order: Actinomycetales
Family: Micrococcaceae
Genus: Arthrobacter
Species: A. agilis
Binomial name
Arthrobacter agilis
Koch et al. 1995[1]
Type strain
28(3), A.C. Baird-Parker 97, AJ 3960, ATCC 966,CCM 2390, CCTM La 2977, CCUG 33025, CIP 81.67, CIP 81.67T, DSM 20550, Hao HK 961, IAM 12848, IFO 15260, IFO 15319, IMET 11266, IMSNU 11061, JCM 2584, Jeffries W.O. 219, Jeffries WO 219, KCTC 3200, L. Jeffries W.O.219, Levine 28(3), LMG 14213, LMG 17244, M. Levine 28 /3/, NBRC 15260, NBRC 15319, NCDO 983, NCFB 983, NCIMB 700983, NCTC 7509, VKM B-19723, VKM B-1973, VTT E-052921, W.O. 219[2]
Synonyms

Micrococcus agilis[3][4]

Arthrobacter agilis is a psychrotrophic bacterium species from the genus of Arthrobacter which occurs in lake water and Antarctic sea ice.[1][3][5][6][7][8][9] Arthrobacter agilis produces dimethylhexadecylamine and carotenoid.[10][11]

Arthrobacter agilis is a plant growth promoting and cold active hydrolytic enzymes producing psychrotrophic bacterium, isolated from Pangong Lake, a subglacial lake in north western Himalayas, India.[12] Genome analysis revealed metabolic versatility with genes involved in metabolism and cold shock adaptation, utilization and biosynthesis of diverse structural and storage polysaccharides such as plant based carbon polymers. The genome of Arthrobacter agilis strain L77 consists of 3,608,439 bp (3.60 Mb) of a circular chromosome. The genome comprises 3316 protein coding genes and 74 RNA genes, 725 hypothetical proteins, 25 pseudo-genes and 1404 unique genes.[13] The candidate genes coding for hydrolytic enzymes and cold shock proteins were identified in the genome. Arthrobacter agilis strain L77 will serve as a source for antifreeze proteins, functional enzymes and other bioactive molecules in future bioprospecting projects.[14]

Further reading[edit]

  • Velázquez-Becerra, C; Macías-Rodríguez, LI; López-Bucio, J; Flores-Cortez, I; Santoyo, G; Hernández-Soberano, C; Valencia-Cantero, E (December 2013). "The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro". Protoplasma. 250 (6): 1251–62. doi:10.1007/s00709-013-0506-y. PMID 23674267.
  • Orozco-Mosqueda Mdel, C; Valencia-Cantero, E; López-Albarrán, P; Martínez-Pacheco, M; Velázquez-Becerra, C (2014). "[Bacterium Arthrobacter agilis UMCV2 and diverse amines inhibit in vitro growth of wood-decay fungi]". Revista Argentina de microbiologia. 47 (3): 219–28. doi:10.1016/j.ram.2015.06.005. PMID 26350556.
  • Velázquez-Becerra, Crisanto; Macías-Rodríguez, Lourdes Iveth; López-Bucio, José; Altamirano-Hernández, Josué; Flores-Cortez, Idolina; Valencia-Cantero, Eduardo (28 September 2010). "A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro". Plant and Soil. 339 (1–2): 329–340. doi:10.1007/s11104-010-0583-z.
  • ed.-in-chief, George M. Garrity (2012). Bergey's manual of systematic bacteriology (2nd ed.). New York: Springer Science + Business Media. ISBN 0-387-68233-3.
  • editor, Naveen Kumar Arora, (2013). Plant microbe symbiosis : fundamentals and advances. New Delhi: Springer. ISBN 81-322-1287-8.
  • (ed.), Koki Horikoshi (2011). Extremophiles handbook. Tokyo: Springer. ISBN 4-431-53897-6.

References[edit]

  1. ^ a b LPSN bacterio.net
  2. ^ Straininfo of Arthrobacter agilis
  3. ^ a b Deutsche Sammlung von Mikroorganismen und Zellkulturen [1]
  4. ^ ATCC
  5. ^ Ulber, vol. ed. Yves Le Gal ; Roldand (2005). Marine biotechnology ([Standing order]. ed.). Berlin: Springer. ISBN 3-540-25669-5.
  6. ^ Miller, edited by Robert V.; Whyte, Lyle G. (2012). Polar microbiology : life in a deep freeze. Washington, DC: ASM Press. ISBN 1-55581-604-5.
  7. ^ editors, Antonio Ventosa, Aharon Oren, Yanhe Ma, (2011). Halophiles and hypersaline environments current research and future trends. Berlin: Springer. ISBN 3-642-20198-9.
  8. ^ Atlas, edited by Asim K. Bej, Jackie Aislabie, Ronald M. (2010). Polar microbiology the ecology, biodiversity, and bioremediation potential of microorganisms in extremely cold environments. Boca Raton: Taylor & Francis. ISBN 1-4200-8388-0.
  9. ^ UniProt
  10. ^ Velázquez-Becerra, C; Macías-Rodríguez, LI; López-Bucio, J; Flores-Cortez, I; Santoyo, G; Hernández-Soberano, C; Valencia-Cantero, E (December 2013). "The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro". Protoplasma. 250 (6): 1251–62. doi:10.1007/s00709-013-0506-y. PMID 23674267.
  11. ^ Kim, edited by Se-Kwon (2013). Marine biomaterials characterization, isolation, and applications. Boca Raton: Taylor & Francis. ISBN 1-4665-0565-6.
  12. ^ Yadav, Ajar Nath; Sachan, Shashwati Ghosh; Verma, Priyanka; Tyagi, Satya Prakash; Kaushik, Rajeev; Saxena, Anil K. (2014-11-05). "Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India)". World Journal of Microbiology and Biotechnology. 31 (1): 95–108. doi:10.1007/s11274-014-1768-z. ISSN 0959-3993.
  13. ^ Singh, Ram N.; Gaba, Sonam; Yadav, Ajar N.; Gaur, Prakhar; Gulati, Sneha; Kaushik, Rajeev; Saxena, Anil K. (2016-01-01). "First high quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77". Standards in Genomic Sciences. 11: 54. doi:10.1186/s40793-016-0176-4. ISSN 1944-3277. PMC 5000428. PMID 27570579. CC-BY icon.svg This content is available under the Creative Commons Attribution License 4.0.
  14. ^ "Bacterial diversity of cold deserts and mining of genes for low temperature tolerance (PDF Download Available)". ResearchGate. doi:10.13140/rg.2.1.2948.1283/2.

External links[edit]