Polynomial sequence
In mathematics , the Bernoulli polynomials , named after Jacob Bernoulli , combine the Bernoulli numbers and binomial coefficients . They are used for series expansion of functions , and with the Euler–MacLaurin formula .
These polynomials occur in the study of many special functions and, in particular, the Riemann zeta function and the Hurwitz zeta function . They are an Appell sequence (i.e. a Sheffer sequence for the ordinary derivative operator). For the Bernoulli polynomials, the number of crossings of the x -axis in the unit interval does not go up with the degree . In the limit of large degree, they approach, when appropriately scaled, the sine and cosine functions .
Bernoulli polynomials
A similar set of polynomials, based on a generating function, is the family of Euler polynomials .
Representations
The Bernoulli polynomials B n can be defined by a generating function . They also admit a variety of derived representations.
Generating functions
The generating function for the Bernoulli polynomials is
t
e
x
t
e
t
−
1
=
∑
n
=
0
∞
B
n
(
x
)
t
n
n
!
.
{\displaystyle {\frac {te^{xt}}{e^{t}-1}}=\sum _{n=0}^{\infty }B_{n}(x){\frac {t^{n}}{n!}}.}
The generating function for the Euler polynomials is
2
e
x
t
e
t
+
1
=
∑
n
=
0
∞
E
n
(
x
)
t
n
n
!
.
{\displaystyle {\frac {2e^{xt}}{e^{t}+1}}=\sum _{n=0}^{\infty }E_{n}(x){\frac {t^{n}}{n!}}.}
B
n
(
x
)
=
∑
k
=
0
n
(
n
k
)
B
n
−
k
x
k
,
{\displaystyle B_{n}(x)=\sum _{k=0}^{n}{n \choose k}B_{n-k}x^{k},}
E
m
(
x
)
=
∑
k
=
0
m
(
m
k
)
E
k
2
k
(
x
−
1
2
)
m
−
k
.
{\displaystyle E_{m}(x)=\sum _{k=0}^{m}{m \choose k}{\frac {E_{k}}{2^{k}}}\left(x-{\frac {1}{2}}\right)^{m-k}\,.}
for n ≥ 0, where B k are the Bernoulli numbers , and E k are the Euler numbers .
Representation by a differential operator
The Bernoulli polynomials are also given by
B
n
(
x
)
=
D
e
D
−
1
x
n
{\displaystyle B_{n}(x)={D \over e^{D}-1}x^{n}}
where D = d /dx is differentiation with respect to x and the fraction is expanded as a formal power series . It follows that
∫
a
x
B
n
(
u
)
d
u
=
B
n
+
1
(
x
)
−
B
n
+
1
(
a
)
n
+
1
.
{\displaystyle \int _{a}^{x}B_{n}(u)~du={\frac {B_{n+1}(x)-B_{n+1}(a)}{n+1}}~.}
cf. integrals below . By the same token, the Euler polynomials are given by
E
n
(
x
)
=
2
e
D
+
1
x
n
.
{\displaystyle E_{n}(x)={\frac {2}{e^{D}+1}}x^{n}.}
Representation by an integral operator
The Bernoulli polynomials are also the unique polynomials determined by
∫
x
x
+
1
B
n
(
u
)
d
u
=
x
n
.
{\displaystyle \int _{x}^{x+1}B_{n}(u)\,du=x^{n}.}
The integral transform
(
T
f
)
(
x
)
=
∫
x
x
+
1
f
(
u
)
d
u
{\displaystyle (Tf)(x)=\int _{x}^{x+1}f(u)\,du}
on polynomials f , simply amounts to
(
T
f
)
(
x
)
=
e
D
−
1
D
f
(
x
)
=
∑
n
=
0
∞
D
n
(
n
+
1
)
!
f
(
x
)
=
f
(
x
)
+
f
′
(
x
)
2
+
f
″
(
x
)
6
+
f
‴
(
x
)
24
+
⋯
.
{\displaystyle {\begin{aligned}(Tf)(x)={e^{D}-1 \over D}f(x)&{}=\sum _{n=0}^{\infty }{D^{n} \over (n+1)!}f(x)\\&{}=f(x)+{f'(x) \over 2}+{f''(x) \over 6}+{f'''(x) \over 24}+\cdots ~.\end{aligned}}}
This can be used to produce the inversion formulae below .
An explicit formula for the Bernoulli polynomials is given by
B
m
(
x
)
=
∑
n
=
0
m
1
n
+
1
∑
k
=
0
n
(
−
1
)
k
(
n
k
)
(
x
+
k
)
m
.
{\displaystyle B_{m}(x)=\sum _{n=0}^{m}{\frac {1}{n+1}}\sum _{k=0}^{n}(-1)^{k}{n \choose k}(x+k)^{m}.}
That is similar to the series expression for the Hurwitz zeta function in the complex plane. Indeed, there is the relationship
B
n
(
x
)
=
−
n
ζ
(
1
−
n
,
x
)
{\displaystyle B_{n}(x)=-n\zeta (1-n,x)}
where ζ (s , q ) is the Hurwitz zeta function. The latter generalizes the Bernoulli polynomials, allowing for non-integer values of n .
The inner sum may be understood to be the n th forward difference of x m ; that is,
Δ
n
x
m
=
∑
k
=
0
n
(
−
1
)
n
−
k
(
n
k
)
(
x
+
k
)
m
{\displaystyle \Delta ^{n}x^{m}=\sum _{k=0}^{n}(-1)^{n-k}{n \choose k}(x+k)^{m}}
where Δ is the forward difference operator . Thus, one may write
B
m
(
x
)
=
∑
n
=
0
m
(
−
1
)
n
n
+
1
Δ
n
x
m
.
{\displaystyle B_{m}(x)=\sum _{n=0}^{m}{\frac {(-1)^{n}}{n+1}}\,\Delta ^{n}x^{m}.}
This formula may be derived from an identity appearing above as follows. Since the forward difference operator Δ equals
Δ
=
e
D
−
1
{\displaystyle \Delta =e^{D}-1}
where D is differentiation with respect to x , we have, from the Mercator series ,
D
e
D
−
1
=
log
(
Δ
+
1
)
Δ
=
∑
n
=
0
∞
(
−
Δ
)
n
n
+
1
.
{\displaystyle {D \over e^{D}-1}={\log(\Delta +1) \over \Delta }=\sum _{n=0}^{\infty }{(-\Delta )^{n} \over n+1}.}
As long as this operates on an m th-degree polynomial such as x m , one may let n go from 0 only up to m .
An integral representation for the Bernoulli polynomials is given by the Nörlund–Rice integral , which follows from the expression as a finite difference.
An explicit formula for the Euler polynomials is given by
E
m
(
x
)
=
∑
n
=
0
m
1
2
n
∑
k
=
0
n
(
−
1
)
k
(
n
k
)
(
x
+
k
)
m
.
{\displaystyle E_{m}(x)=\sum _{n=0}^{m}{\frac {1}{2^{n}}}\sum _{k=0}^{n}(-1)^{k}{n \choose k}(x+k)^{m}\,.}
The above follows analogously, using the fact that
2
e
D
+
1
=
1
1
+
Δ
/
2
=
∑
n
=
0
∞
(
−
Δ
2
)
n
.
{\displaystyle {\frac {2}{e^{D}+1}}={\frac {1}{1+\Delta /2}}=\sum _{n=0}^{\infty }{\Bigl (}-{\frac {\Delta }{2}}{\Bigr )}^{n}.}
Sums of p th powers
Using either the above integral representation of
x
n
{\displaystyle x^{n}}
or the identity
B
n
(
x
+
1
)
−
B
n
(
x
)
=
n
x
n
−
1
{\displaystyle B_{n}(x+1)-B_{n}(x)=nx^{n-1}}
, we have
∑
k
=
0
x
k
p
=
∫
0
x
+
1
B
p
(
t
)
d
t
=
B
p
+
1
(
x
+
1
)
−
B
p
+
1
p
+
1
{\displaystyle \sum _{k=0}^{x}k^{p}=\int _{0}^{x+1}B_{p}(t)\,dt={\frac {B_{p+1}(x+1)-B_{p+1}}{p+1}}}
(assuming 00 = 1).
The Bernoulli and Euler numbers
The Bernoulli numbers are given by
B
n
=
B
n
(
0
)
.
{\displaystyle \textstyle B_{n}=B_{n}(0).}
This definition gives
ζ
(
−
n
)
=
(
−
1
)
n
n
+
1
B
n
+
1
{\displaystyle \textstyle \zeta (-n)={\frac {(-1)^{n}}{n+1}}B_{n+1}}
for
n
=
0
,
1
,
2
,
…
{\displaystyle \textstyle n=0,1,2,\ldots }
.
An alternate convention defines the Bernoulli numbers as
B
n
=
B
n
(
1
)
.
{\displaystyle \textstyle B_{n}=B_{n}(1).}
The two conventions differ only for
n
=
1
{\displaystyle n=1}
since
B
1
(
1
)
=
1
2
=
−
B
1
(
0
)
{\displaystyle B_{1}(1)={\tfrac {1}{2}}=-B_{1}(0)}
.
The Euler numbers are given by
E
n
=
2
n
E
n
(
1
2
)
.
{\displaystyle E_{n}=2^{n}E_{n}({\tfrac {1}{2}}).}
Explicit expressions for low degrees
The first few Bernoulli polynomials are:
B
0
(
x
)
=
1
B
1
(
x
)
=
x
−
1
2
B
2
(
x
)
=
x
2
−
x
+
1
6
B
3
(
x
)
=
x
3
−
3
2
x
2
+
1
2
x
B
4
(
x
)
=
x
4
−
2
x
3
+
x
2
−
1
30
B
5
(
x
)
=
x
5
−
5
2
x
4
+
5
3
x
3
−
1
6
x
B
6
(
x
)
=
x
6
−
3
x
5
+
5
2
x
4
−
1
2
x
2
+
1
42
.
{\displaystyle {\begin{aligned}B_{0}(x)&=1\\[8pt]B_{1}(x)&=x-{\frac {1}{2}}\\[8pt]B_{2}(x)&=x^{2}-x+{\frac {1}{6}}\\[8pt]B_{3}(x)&=x^{3}-{\frac {3}{2}}x^{2}+{\frac {1}{2}}x\\[8pt]B_{4}(x)&=x^{4}-2x^{3}+x^{2}-{\frac {1}{30}}\\[8pt]B_{5}(x)&=x^{5}-{\frac {5}{2}}x^{4}+{\frac {5}{3}}x^{3}-{\frac {1}{6}}x\\[8pt]B_{6}(x)&=x^{6}-3x^{5}+{\frac {5}{2}}x^{4}-{\frac {1}{2}}x^{2}+{\frac {1}{42}}.\end{aligned}}}
The first few Euler polynomials are:
E
0
(
x
)
=
1
E
1
(
x
)
=
x
−
1
2
E
2
(
x
)
=
x
2
−
x
E
3
(
x
)
=
x
3
−
3
2
x
2
+
1
4
E
4
(
x
)
=
x
4
−
2
x
3
+
x
E
5
(
x
)
=
x
5
−
5
2
x
4
+
5
2
x
2
−
1
2
E
6
(
x
)
=
x
6
−
3
x
5
+
5
x
3
−
3
x
.
{\displaystyle {\begin{aligned}E_{0}(x)&=1\\[8pt]E_{1}(x)&=x-{\frac {1}{2}}\\[8pt]E_{2}(x)&=x^{2}-x\\[8pt]E_{3}(x)&=x^{3}-{\frac {3}{2}}x^{2}+{\frac {1}{4}}\\[8pt]E_{4}(x)&=x^{4}-2x^{3}+x\\[8pt]E_{5}(x)&=x^{5}-{\frac {5}{2}}x^{4}+{\frac {5}{2}}x^{2}-{\frac {1}{2}}\\[8pt]E_{6}(x)&=x^{6}-3x^{5}+5x^{3}-3x.\end{aligned}}}
Maximum and minimum
At higher n , the amount of variation in B n (x ) between x = 0 and x = 1 gets large. For instance,
B
16
(
x
)
=
x
16
−
8
x
15
+
20
x
14
−
182
3
x
12
+
572
3
x
10
−
429
x
8
+
1820
3
x
6
−
1382
3
x
4
+
140
x
2
−
3617
510
{\displaystyle B_{16}(x)=x^{16}-8x^{15}+20x^{14}-{\frac {182}{3}}x^{12}+{\frac {572}{3}}x^{10}-429x^{8}+{\frac {1820}{3}}x^{6}-{\frac {1382}{3}}x^{4}+140x^{2}-{\frac {3617}{510}}}
which shows that the value at x = 0 (and at x = 1) is −3617/510 ≈ −7.09, while at x = 1/2, the value is 118518239/3342336 ≈ +7.09. D.H. Lehmer [ 1] showed that the maximum value of B n (x ) between 0 and 1 obeys
M
n
<
2
n
!
(
2
π
)
n
{\displaystyle M_{n}<{\frac {2n!}{(2\pi )^{n}}}}
unless n is 2 modulo 4, in which case
M
n
=
2
ζ
(
n
)
n
!
(
2
π
)
n
{\displaystyle M_{n}={\frac {2\zeta (n)n!}{(2\pi )^{n}}}}
(where
ζ
(
x
)
{\displaystyle \zeta (x)}
is the Riemann zeta function ), while the minimum obeys
m
n
>
−
2
n
!
(
2
π
)
n
{\displaystyle m_{n}>{\frac {-2n!}{(2\pi )^{n}}}}
unless n is 0 modulo 4, in which case
m
n
=
−
2
ζ
(
n
)
n
!
(
2
π
)
n
.
{\displaystyle m_{n}={\frac {-2\zeta (n)n!}{(2\pi )^{n}}}.}
These limits are quite close to the actual maximum and minimum, and Lehmer gives more accurate limits as well.
Differences and derivatives
The Bernoulli and Euler polynomials obey many relations from umbral calculus :
Δ
B
n
(
x
)
=
B
n
(
x
+
1
)
−
B
n
(
x
)
=
n
x
n
−
1
,
{\displaystyle \Delta B_{n}(x)=B_{n}(x+1)-B_{n}(x)=nx^{n-1},}
Δ
E
n
(
x
)
=
E
n
(
x
+
1
)
−
E
n
(
x
)
=
2
(
x
n
−
E
n
(
x
)
)
.
{\displaystyle \Delta E_{n}(x)=E_{n}(x+1)-E_{n}(x)=2(x^{n}-E_{n}(x)).}
(Δ is the forward difference operator ). Also,
E
n
(
x
+
1
)
+
E
n
(
x
)
=
2
x
n
.
{\displaystyle E_{n}(x+1)+E_{n}(x)=2x^{n}.}
These polynomial sequences are Appell sequences :
B
n
′
(
x
)
=
n
B
n
−
1
(
x
)
,
{\displaystyle B_{n}'(x)=nB_{n-1}(x),}
E
n
′
(
x
)
=
n
E
n
−
1
(
x
)
.
{\displaystyle E_{n}'(x)=nE_{n-1}(x).}
Translations
B
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
B
k
(
x
)
y
n
−
k
{\displaystyle B_{n}(x+y)=\sum _{k=0}^{n}{n \choose k}B_{k}(x)y^{n-k}}
E
n
(
x
+
y
)
=
∑
k
=
0
n
(
n
k
)
E
k
(
x
)
y
n
−
k
{\displaystyle E_{n}(x+y)=\sum _{k=0}^{n}{n \choose k}E_{k}(x)y^{n-k}}
These identities are also equivalent to saying that these polynomial sequences are Appell sequences . (Hermite polynomials are another example.)
Symmetries
B
n
(
1
−
x
)
=
(
−
1
)
n
B
n
(
x
)
,
n
≥
0
,
{\displaystyle B_{n}(1-x)=(-1)^{n}B_{n}(x),\quad n\geq 0,}
E
n
(
1
−
x
)
=
(
−
1
)
n
E
n
(
x
)
{\displaystyle E_{n}(1-x)=(-1)^{n}E_{n}(x)}
(
−
1
)
n
B
n
(
−
x
)
=
B
n
(
x
)
+
n
x
n
−
1
{\displaystyle (-1)^{n}B_{n}(-x)=B_{n}(x)+nx^{n-1}}
(
−
1
)
n
E
n
(
−
x
)
=
−
E
n
(
x
)
+
2
x
n
{\displaystyle (-1)^{n}E_{n}(-x)=-E_{n}(x)+2x^{n}}
B
n
(
1
2
)
=
(
1
2
n
−
1
−
1
)
B
n
,
n
≥
0
from the multiplication theorems below.
{\displaystyle B_{n}\left({\frac {1}{2}}\right)=\left({\frac {1}{2^{n-1}}}-1\right)B_{n},\quad n\geq 0{\text{ from the multiplication theorems below.}}}
Zhi-Wei Sun and Hao Pan [ 2] established the following surprising symmetry relation: If r + s + t = n and x + y + z = 1 , then
r
[
s
,
t
;
x
,
y
]
n
+
s
[
t
,
r
;
y
,
z
]
n
+
t
[
r
,
s
;
z
,
x
]
n
=
0
,
{\displaystyle r[s,t;x,y]_{n}+s[t,r;y,z]_{n}+t[r,s;z,x]_{n}=0,}
where
[
s
,
t
;
x
,
y
]
n
=
∑
k
=
0
n
(
−
1
)
k
(
s
k
)
(
t
n
−
k
)
B
n
−
k
(
x
)
B
k
(
y
)
.
{\displaystyle [s,t;x,y]_{n}=\sum _{k=0}^{n}(-1)^{k}{s \choose k}{t \choose {n-k}}B_{n-k}(x)B_{k}(y).}
Fourier series
The Fourier series of the Bernoulli polynomials is also a Dirichlet series , given by the expansion
B
n
(
x
)
=
−
n
!
(
2
π
i
)
n
∑
k
≠
0
e
2
π
i
k
x
k
n
=
−
2
n
!
∑
k
=
1
∞
cos
(
2
k
π
x
−
n
π
2
)
(
2
k
π
)
n
.
{\displaystyle B_{n}(x)=-{\frac {n!}{(2\pi i)^{n}}}\sum _{k\not =0}{\frac {e^{2\pi ikx}}{k^{n}}}=-2n!\sum _{k=1}^{\infty }{\frac {\cos \left(2k\pi x-{\frac {n\pi }{2}}\right)}{(2k\pi )^{n}}}.}
Note the simple large n limit to suitably scaled trigonometric functions.
This is a special case of the analogous form for the Hurwitz zeta function
B
n
(
x
)
=
−
Γ
(
n
+
1
)
∑
k
=
1
∞
exp
(
2
π
i
k
x
)
+
e
i
π
n
exp
(
2
π
i
k
(
1
−
x
)
)
(
2
π
i
k
)
n
.
{\displaystyle B_{n}(x)=-\Gamma (n+1)\sum _{k=1}^{\infty }{\frac {\exp(2\pi ikx)+e^{i\pi n}\exp(2\pi ik(1-x))}{(2\pi ik)^{n}}}.}
This expansion is valid only for 0 ≤ x ≤ 1 when n ≥ 2 and is valid for 0 < x < 1 when n = 1.
The Fourier series of the Euler polynomials may also be calculated. Defining the functions
C
ν
(
x
)
=
∑
k
=
0
∞
cos
(
(
2
k
+
1
)
π
x
)
(
2
k
+
1
)
ν
{\displaystyle C_{\nu }(x)=\sum _{k=0}^{\infty }{\frac {\cos((2k+1)\pi x)}{(2k+1)^{\nu }}}}
and
S
ν
(
x
)
=
∑
k
=
0
∞
sin
(
(
2
k
+
1
)
π
x
)
(
2
k
+
1
)
ν
{\displaystyle S_{\nu }(x)=\sum _{k=0}^{\infty }{\frac {\sin((2k+1)\pi x)}{(2k+1)^{\nu }}}}
for
ν
>
1
{\displaystyle \nu >1}
, the Euler polynomial has the Fourier series
C
2
n
(
x
)
=
(
−
1
)
n
4
(
2
n
−
1
)
!
π
2
n
E
2
n
−
1
(
x
)
{\displaystyle C_{2n}(x)={\frac {(-1)^{n}}{4(2n-1)!}}\pi ^{2n}E_{2n-1}(x)}
and
S
2
n
+
1
(
x
)
=
(
−
1
)
n
4
(
2
n
)
!
π
2
n
+
1
E
2
n
(
x
)
.
{\displaystyle S_{2n+1}(x)={\frac {(-1)^{n}}{4(2n)!}}\pi ^{2n+1}E_{2n}(x).}
Note that the
C
ν
{\displaystyle C_{\nu }}
and
S
ν
{\displaystyle S_{\nu }}
are odd and even, respectively:
C
ν
(
x
)
=
−
C
ν
(
1
−
x
)
{\displaystyle C_{\nu }(x)=-C_{\nu }(1-x)}
and
S
ν
(
x
)
=
S
ν
(
1
−
x
)
.
{\displaystyle S_{\nu }(x)=S_{\nu }(1-x).}
They are related to the Legendre chi function
χ
ν
{\displaystyle \chi _{\nu }}
as
C
ν
(
x
)
=
Re
χ
ν
(
e
i
x
)
{\displaystyle C_{\nu }(x)=\operatorname {Re} \chi _{\nu }(e^{ix})}
and
S
ν
(
x
)
=
Im
χ
ν
(
e
i
x
)
.
{\displaystyle S_{\nu }(x)=\operatorname {Im} \chi _{\nu }(e^{ix}).}
Inversion
The Bernoulli and Euler polynomials may be inverted to express the monomial in terms of the polynomials.
Specifically, evidently from the above section on integral operators , it follows that
x
n
=
1
n
+
1
∑
k
=
0
n
(
n
+
1
k
)
B
k
(
x
)
{\displaystyle x^{n}={\frac {1}{n+1}}\sum _{k=0}^{n}{n+1 \choose k}B_{k}(x)}
and
x
n
=
E
n
(
x
)
+
1
2
∑
k
=
0
n
−
1
(
n
k
)
E
k
(
x
)
.
{\displaystyle x^{n}=E_{n}(x)+{\frac {1}{2}}\sum _{k=0}^{n-1}{n \choose k}E_{k}(x).}
Relation to falling factorial
The Bernoulli polynomials may be expanded in terms of the falling factorial
(
x
)
k
{\displaystyle (x)_{k}}
as
B
n
+
1
(
x
)
=
B
n
+
1
+
∑
k
=
0
n
n
+
1
k
+
1
{
n
k
}
(
x
)
k
+
1
{\displaystyle B_{n+1}(x)=B_{n+1}+\sum _{k=0}^{n}{\frac {n+1}{k+1}}\left\{{\begin{matrix}n\\k\end{matrix}}\right\}(x)_{k+1}}
where
B
n
=
B
n
(
0
)
{\displaystyle B_{n}=B_{n}(0)}
and
{
n
k
}
=
S
(
n
,
k
)
{\displaystyle \left\{{\begin{matrix}n\\k\end{matrix}}\right\}=S(n,k)}
denotes the Stirling number of the second kind . The above may be inverted to express the falling factorial in terms of the Bernoulli polynomials:
(
x
)
n
+
1
=
∑
k
=
0
n
n
+
1
k
+
1
[
n
k
]
(
B
k
+
1
(
x
)
−
B
k
+
1
)
{\displaystyle (x)_{n+1}=\sum _{k=0}^{n}{\frac {n+1}{k+1}}\left[{\begin{matrix}n\\k\end{matrix}}\right]\left(B_{k+1}(x)-B_{k+1}\right)}
where
[
n
k
]
=
s
(
n
,
k
)
{\displaystyle \left[{\begin{matrix}n\\k\end{matrix}}\right]=s(n,k)}
denotes the Stirling number of the first kind .
Multiplication theorems
The multiplication theorems were given by Joseph Ludwig Raabe in 1851:
For a natural number m ≥1 ,
B
n
(
m
x
)
=
m
n
−
1
∑
k
=
0
m
−
1
B
n
(
x
+
k
m
)
{\displaystyle B_{n}(mx)=m^{n-1}\sum _{k=0}^{m-1}B_{n}\left(x+{\frac {k}{m}}\right)}
E
n
(
m
x
)
=
m
n
∑
k
=
0
m
−
1
(
−
1
)
k
E
n
(
x
+
k
m
)
for
m
=
1
,
3
,
…
{\displaystyle E_{n}(mx)=m^{n}\sum _{k=0}^{m-1}(-1)^{k}E_{n}\left(x+{\frac {k}{m}}\right)\quad {\mbox{ for }}m=1,3,\dots }
E
n
(
m
x
)
=
−
2
n
+
1
m
n
∑
k
=
0
m
−
1
(
−
1
)
k
B
n
+
1
(
x
+
k
m
)
for
m
=
2
,
4
,
…
{\displaystyle E_{n}(mx)={\frac {-2}{n+1}}m^{n}\sum _{k=0}^{m-1}(-1)^{k}B_{n+1}\left(x+{\frac {k}{m}}\right)\quad {\mbox{ for }}m=2,4,\dots }
Integrals
Two definite integrals relating the Bernoulli and Euler polynomials to the Bernoulli and Euler numbers are:[ 3]
∫
0
1
B
n
(
t
)
B
m
(
t
)
d
t
=
(
−
1
)
n
−
1
m
!
n
!
(
m
+
n
)
!
B
n
+
m
for
m
,
n
≥
1
{\displaystyle \int _{0}^{1}B_{n}(t)B_{m}(t)\,dt=(-1)^{n-1}{\frac {m!\;n!}{(m+n)!}}B_{n+m}\quad {\text{for }}m,n\geq 1}
∫
0
1
E
n
(
t
)
E
m
(
t
)
d
t
=
(
−
1
)
n
4
(
2
m
+
n
+
2
−
1
)
m
!
n
!
(
m
+
n
+
2
)
!
B
n
+
m
+
2
{\displaystyle \int _{0}^{1}E_{n}(t)E_{m}(t)\,dt=(-1)^{n}4(2^{m+n+2}-1){\frac {m!\;n!}{(m+n+2)!}}B_{n+m+2}}
Another integral formula states[ 4]
∫
0
1
E
n
(
x
+
y
)
log
(
tan
π
2
x
)
d
x
=
n
!
∑
k
=
1
⌊
n
+
1
2
⌋
(
−
1
)
k
−
1
π
2
k
(
2
−
2
−
2
k
)
ζ
(
2
k
+
1
)
y
n
+
1
−
2
k
(
n
+
1
−
2
k
)
!
{\displaystyle \int _{0}^{1}E_{n}\left(x+y\right)\log(\tan {\frac {\pi }{2}}x)\,dx=n!\sum _{k=1}^{\left\lfloor {\frac {n+1}{2}}\right\rfloor }{\frac {(-1)^{k-1}}{\pi ^{2k}}}\left(2-2^{-2k}\right)\zeta (2k+1){\frac {y^{n+1-2k}}{(n+1-2k)!}}}
with the special case for
y
=
0
{\displaystyle y=0}
∫
0
1
E
2
n
−
1
(
x
)
log
(
tan
π
2
x
)
d
x
=
(
−
1
)
n
−
1
(
2
n
−
1
)
!
π
2
n
(
2
−
2
−
2
n
)
ζ
(
2
n
+
1
)
{\displaystyle \int _{0}^{1}E_{2n-1}\left(x\right)\log(\tan {\frac {\pi }{2}}x)\,dx={\frac {(-1)^{n-1}(2n-1)!}{\pi ^{2n}}}\left(2-2^{-2n}\right)\zeta (2n+1)}
∫
0
1
B
2
n
−
1
(
x
)
log
(
tan
π
2
x
)
d
x
=
(
−
1
)
n
−
1
π
2
n
2
2
n
−
2
(
2
n
−
1
)
!
∑
k
=
1
n
(
2
2
k
+
1
−
1
)
ζ
(
2
k
+
1
)
ζ
(
2
n
−
2
k
)
{\displaystyle \int _{0}^{1}B_{2n-1}\left(x\right)\log(\tan {\frac {\pi }{2}}x)\,dx={\frac {(-1)^{n-1}}{\pi ^{2n}}}{\frac {2^{2n-2}}{(2n-1)!}}\sum _{k=1}^{n}(2^{2k+1}-1)\zeta (2k+1)\zeta (2n-2k)}
∫
0
1
E
2
n
(
x
)
log
(
tan
π
2
x
)
d
x
=
∫
0
1
B
2
n
(
x
)
log
(
tan
π
2
x
)
d
x
=
0
{\displaystyle \int _{0}^{1}E_{2n}\left(x\right)\log(\tan {\frac {\pi }{2}}x)\,dx=\int _{0}^{1}B_{2n}\left(x\right)\log(\tan {\frac {\pi }{2}}x)\,dx=0}
∫
0
1
B
2
n
−
1
(
x
)
cot
(
π
x
)
d
x
=
2
(
2
n
−
1
)
!
(
−
1
)
n
−
1
(
2
π
)
2
n
−
1
ζ
(
2
n
−
1
)
{\displaystyle \int _{0}^{1}{{{B}_{2n-1}}\left(x\right)\cot \left(\pi x\right)dx}={\frac {2\left(2n-1\right)!}{{{\left(-1\right)}^{n-1}}{{\left(2\pi \right)}^{2n-1}}}}\zeta \left(2n-1\right)}
Periodic Bernoulli polynomials
A periodic Bernoulli polynomial P n (x ) is a Bernoulli polynomial evaluated at the fractional part of the argument x . These functions are used to provide the remainder term in the Euler–Maclaurin formula relating sums to integrals. The first polynomial is a sawtooth function .
Strictly these functions are not polynomials at all and more properly should be termed the periodic Bernoulli functions, and P 0 (x ) is not even a function, being the derivative of a sawtooth and so a Dirac comb .
The following properties are of interest, valid for all
x
{\displaystyle x}
:
P
k
(
x
)
is continuous for all
k
>
1
P
k
′
(
x
)
exists and is continuous for
k
>
2
P
k
′
(
x
)
=
k
P
k
−
1
(
x
)
,
k
>
2
{\displaystyle {\begin{aligned}&P_{k}(x){\text{ is continuous for all }}k>1\\[5pt]&P_{k}'(x){\text{ exists and is continuous for }}k>2\\[5pt]&P'_{k}(x)=kP_{k-1}(x),k>2\end{aligned}}}
See also
References
Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , (1972) Dover, New York. (See Chapter 23)
Apostol, Tom M. (1976), Introduction to analytic number theory , Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3 , MR 0434929 , Zbl 0335.10001 (See chapter 12.11)
Dilcher, K. (2010), "Bernoulli and Euler Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Cvijović, Djurdje; Klinowski, Jacek (1995). "New formulae for the Bernoulli and Euler polynomials at rational arguments" . Proceedings of the American Mathematical Society . 123 (5): 1527–1535. doi :10.1090/S0002-9939-1995-1283544-0 . JSTOR 2161144 .
Guillera, Jesus; Sondow, Jonathan (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal . 16 (3): 247–270. arXiv :math.NT/0506319 . doi :10.1007/s11139-007-9102-0 . S2CID 14910435 . (Reviews relationship to the Hurwitz zeta function and Lerch transcendent.)
Hugh L. Montgomery ; Robert C. Vaughan (2007). Multiplicative number theory I. Classical theory . Cambridge tracts in advanced mathematics. Vol. 97. Cambridge: Cambridge Univ. Press. pp. 495–519. ISBN 978-0-521-84903-6 .
External links
International National Other