Brascamp–Lieb inequality
In mathematics, the Brascamp–Lieb inequality can refer to two inequalities. The first is a result in geometry concerning integrable functions on n-dimensional Euclidean space . It generalizes the Loomis–Whitney inequality and Hölder's inequality. The second is a result of probability theory which gives a concentration inequality for log-concave probability distributions. Both are named after Herm Jan Brascamp and Elliott H. Lieb.
The geometric inequality
Fix natural numbers m and n. For 1 ≤ i ≤ m, let ni ∈ N and let ci > 0 so that
Choose non-negative, integrable functions
Then the following inequality holds:
where D is given by
Another way to state this is that the constant D is what one would obtain by restricting attention to the case in which each is a centered Gaussian function, namely .[1]
Relationships to other inequalities
The geometric Brascamp–Lieb inequality
The geometric Brascamp–Lieb inequality is a special case of the above,[2] and was used by Ball (1989) to provide upper bounds for volumes of central sections of cubes.[3]
For i = 1, ..., m, let ci > 0 and let ui ∈ Sn−1 be a unit vector; suppose that ci and ui satisfy
for all x in Rn. Let fi ∈ L1(R; [0, +∞]) for each i = 1, ..., m. Then
The geometric Brascamp–Lieb inequality follows from the Brascamp–Lieb inequality as stated above by taking ni = 1 and Bi(x) = x · ui. Then, for zi ∈ R,
It follows that D = 1 in this case.
Hölder's inequality
As another special case, take ni = n, Bi = id, the identity map on , replacing fi by f1/ci
i, and let ci = 1 / pi for 1 ≤ i ≤ m. Then
and the log-concavity of the determinant of a positive definite matrix implies that D = 1. This yields Hölder's inequality in :
The concentration inequality
Consider a probability density function . is said to be a log-concave measure if the function is convex. Such probability density functions have tails which decay exponentially fast, so most of the probability mass resides in a small region around the mode of . The Brascamp–Lieb inequality gives another characterization of the compactness of by bounding the mean of any statistic .
Formally, let be any derivable function. The Brascamp–Lieb inequality reads:
where H is the Hessian and is the Nabla symbol.[4]
Relationship with other inequalities
The Brascamp–Lieb inequality is an extension of the Poincaré inequality which only concerns Gaussian probability distributions.[citation needed]
The Brascamp–Lieb inequality is also related to the Cramér–Rao bound. While Brascamp–Lieb is an upper-bound, the Cramér–Rao bound lower-bounds the variance of .[citation needed] The expressions are almost identical:
References
- ^ This inequality is in Lieb, E. H. (1990). "Gaussian Kernels have only Gaussian Maximizers". Inventiones Mathematicae. 102: 179–208. doi:10.1007/bf01233426.
- ^ This was derived first in Brascamp, H. J.; Lieb, E. H. (1976). "Best Constants in Young's Inequality, Its Converse and Its Generalization to More Than Three Functions". Adv. Math. 20: 151–172. doi:10.1016/0001-8708(76)90184-5.
- ^ Ball, Keith M. (1989). "Volumes of Sections of Cubes and Related Problems". In Lindenstrauss, J.; Milman, V. D. (eds.). Geometric Aspects of Functional Analysis (1987–88). Lecture Notes in Math. Vol. 1376. Berlin: Springer. pp. 251–260.
- ^ This theorem was originally derived in Brascamp, H. J.; Lieb, E. H. (1976). "On Extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation". Journal of Functional Analysis. 22: 366–389. doi:10.1016/0022-1236(76)90004-5. Extensions of the inequality can be found in Hargé, Gilles (2008). "Reinforcement of an Inequality due to Brascamp and Lieb". Journal of Functional Analysis. 254: 267–300. doi:10.1016/j.jfa.2007.07.019 and Carlen, Eric A.; Cordero-Erausquin, Dario; Lieb, Elliott H. (2013). "Asymmetric Covariance Estimates of Brascamp-Lieb Type and Related Inequalities for Log-concave Measures". Annales de l'Institut Henri Poincaré B. 49: 1–12. doi:10.1214/11-aihp462.
- Gardner, Richard J. (2002). "The Brunn–Minkowski inequality" (PDF). Bull. Amer. Math. Soc. (N.S.). 39 (3): 355–405. doi:10.1090/S0273-0979-02-00941-2.