Jump to content

Carbonyl cyanide m-chlorophenyl hydrazone

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by DePiep (talk | contribs) at 12:14, 16 December 2015 (same). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Carbonyl cyanide m-chlorophenyl hydrazone
Names
IUPAC name
[(3-chlorophenyl)hydrazono]malononitrile
Systematic IUPAC name
[(3-chlorophenyl)hydrazono]propanedinitrile
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.008.277 Edit this at Wikidata
KEGG
MeSH CCCP
  • InChI=1S/C9H5ClN4/c10-7-2-1-3-8(4-7)13-14-9(5-11)6-12/h1-4,13H checkY
    Key: UGTJLJZQQFGTJD-UHFFFAOYSA-N checkY
  • InChI=1/C9H5ClN4/c10-7-2-1-3-8(4-7)13-14-9(5-11)6-12/h1-4,13H
    Key: UGTJLJZQQFGTJD-UHFFFAOYAQ
  • Clc1cc(N\N=C(/C#N)C#N)ccc1
Properties
C9H5ClN4
Molar mass 204.616 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Carbonyl cyanide m-chlorophenyl hydrazone (CCCP), is a chemical inhibitor of oxidative phosphorylation. It is a nitrile, hydrazone and protonophore. In general, CCCP causes the gradual destruction of living cells and death of the organism.[1][2] The CCCP affects the protein synthesis reactions in seedling mitochondria.[3] CCCP causes an uncoupling of the proton gradient that is established during the normal activity of electron carriers in the electron transport chain. The chemical acts essentially as an ionophore and reduces the ability of ATP synthase to function optimally.

See also

References

  1. ^ J.W. Park; S.Y. Lee; J.Y. Yang; H.W. Rho; B.H. Park; S.N. Lim; J.S. Kim; H.R. Kim (1997). "Effect of carbonyl cyanide m-chlorophenylhydrazone (CCCP) on the dimerization of lipoprotein lipase". Biochimica et Biophysica Acta. 1344 (2): 132–8. doi:10.1016/s0005-2760(96)00146-4. PMID 9030190.
  2. ^ D. Gášková; B. Brodská; A. Holoubek; K. Sigler (1999). "Factors and processes involved in membrane potential build-up in yeast: diS-C3(3) assay". The International Journal of Biochemistry & Cell Biology. 31 (5): 575–584. doi:10.1016/S1357-2725(99)00002-3.
  3. ^ Y.M. Konstantinov; I.V. Subota; A.S. Arziev. "Protein synthesis in mitochondria under different redox conditions". Preprint of the Irkutsk Institute of Plant Physiology and Biochemistry.